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Foreword 

Welcome to the 16th International Symposium on High-level Parallel Programming and 

Applications, HLPP 2023. 

As processor and system manufacturers adjust their roadmaps towards increasing levels 

of both inter and intra-chip parallelism, so the urgency of reorienting the mainstream 

software industry towards these architectures grows. At present, popular parallel and 

distributed programming methodologies are dominated by low-level techniques such as 

send/receive message passing, or equivalently unstructured shared memory mechanisms. 

Higher-level, structured approaches offer many possible advantages and have a key role to 

play in the scalable exploitation of ubiquitous parallelism.  

HLPP 2023 is the sixteen in a series of symposiums seeking to provide a forum for 

discussion and research about such high-level approaches to parallel and distributed 

programming. 

The call for papers generated 13 submissions, from Austria, Sweden, Italy, France, 

Portugal, Germany, Spain, Israel and USA.  The Program Committee selected 8 papers for 

inclusion in the final program, 6 of these being proposed to be published in a special issue 

of the International Journal of Parallel Programming (IJPP), dedicated to HLPP 2023 

symposium. In addition to the refereed papers, the final program includes one invited 

keynote, by Dana Petcu (West University of Timișoara, Romania).  

We would like to thank the authors and  speakers for providing the content of the 

program. We also would like to express our gratitude to the  program committee, who 

worked very hard in reviewing the papers and providing suggestions for their 

improvements. A special thank you goes to the sponsors of the event: HUAWEI 
Technologies France SASU, Robert Bosch SRL and Babesǟ-Bolyai University. We are also 

grateful to the maintainers of the EasyChair conference system for hosting the refereeing 

process.  
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Automatic Discovery of Collective Communication
Patterns in Parallelized Task Graphs

Fabian Knorr · Philip Salzmann ·
Peter Thoman · Thomas Fahringer

Abstract Collective communication APIs equip MPI vendors with the nec-
essary context to optimize cluster-wide operations on the basis of theoretical 
complexity models and characteristics of the involved interconnects.

Modern HPC runtime systems with a programmability focus can perform 
dependency analysis to eliminate the need for manual communication entirely. 
Profiting from optimized collective routines in this context often requires global 
analysis of the implicit point-to-point communication pattern or tight con-
strains on the data access patterns allowed inside kernels.

The Celerity API provides a high degree of freedom for both runtime im-
plementors and application developers by tieing transparent work assignment 
to data access patterns through user-defined range-mapper functions. Canon-
ically, data dependencies are resolved through an intra-node coherence model 
and inter-node point-to-point communication.

This paper presents Collective Pattern Discovery (CPD), an online, fully 
distributed, coordination-free method for detecting collective communication 
patterns on parallelized task graphs. Through extensive scheduling and com-
munication microbenchmarks as well as a strong scaling experiment on a 
compute-intensive application, we demonstrate that CPD can achieve sub-
stantial performance gains in the Celerity model.

Keywords Task Graph · Scheduling · MPI · Collective Communication

1 Introduction

As we enter the Exascale era with ever increasing parallelism and heterogeneity 
in clusters, a growing number of HPC applications become bound primarily by 
memory and communication bottlenecks. Efficiently managing communication

Fabian Knorr, Philip Salzmann, Peter Thoman, Thomas Fahringer
University of Innsbruck, Austria
E-mail: firstname.lastname@uibk.ac.at
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between memory hierarchies is now of the utmost importance for scaling any
application beyond a small number of compute nodes.

With traditional HPC software stacks – i.e. MPI+X – these hardware de-
velopments necessitate an increasing level of expertise in parallelization and
distributed software optimization on part of the application programmer. How-
ever, as the actual domain of the computations performed on HPC systems is
generally some other physical science, such expertise is only available to large
projects consortia, or by leveraging existing domain-specific software packages.

This state of the art hampers the development of new algorithms and
science, as there is a clear trade-off: experiment with new algorithmic and
scientific approaches while restricted to smaller-scale or less efficient computa-
tion; or accept the limits of existing software packages, but scale more easily
to larger systems and problem sizes.

One approach towards bridging this gap between a focus on allowing rel-
atively straightforward implementation of domain science on the one hand
and the complexities of large heterogeneous distributed memory clusters on
the other hand are HPC runtime systems which seek to automate aspects
like data distribution. While systems like Celerity [14] can greatly reduce the
burden on the application programmer, meeting the high degree of freedom
necessary to target the vast cosmos of data access patterns found in scien-
tific computing requires a communication model built around point-to-point
primitives in the general case.

For communication patterns involving a large number of cluster nodes how-
ever, collective communication primitives as found in MPI can outperform
point-to-point cascades in network latency and throughput while also reducing
tracking overhead in the runtime. In this paper, we suggest that the conflict
in requirements between API expressiveness, programmability and commu-
nication efficiency can best overcome by automated pattern detection and
optimization on an existing point-to-point model.

To substantiate this claim, we present Collective Pattern Discovery for
the Celerity model, a method which automates detection of data access pat-
terns that map to collective communication steps and inserts eager collective
communication steps where possible. Our approach is deterministic and fully
distributed without coordination between participating nodes and exhibits low
overhead. It neither requires training, observation of previous communication
nor guidance from the application developer.

1.1 MPI Collectives

The MPI Standard [10] defines five categories of non-mutating collective oper-
ations that can replace equivalent, hand-rolled point-to-point communication
cascades for improved latency and throughput.

These collectives are either symmetric or revolve around one root node;
and transmitted data is either personalized (nodes receive disjoint buffer sub-
ranges) or non-personalized (every node receives the full buffer range).
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collective operation MPI function

broadcast non-personalized one-to-all MPI_Bcast, MPI_Ibcast
scatter personalized one-to-all MPI_Scatter[v], MPI_Iscatter[v]
gather all-to-one MPI_Gather[v], MPI_Igather[v]
all-gather non-personalized all-to-all MPI_Allgather[v], MPI_Iallgather[v]
all-to-all personalized all-to-all MPI_Alltoall[vw], MPI_Ialltoall[vw]

The significance of efficient collectives for MPI application performance
becomes apparent in the extensive library of research on optimizing these op-
erations in popular implementations [13,9]. Accurate theoretical models allow
latency- and throughput-optimized implementations to select optimal commu-
nication patterns depending on cluster topology [5] and problem size [11].

1.2 Celerity

Celerity is a high-level C++ runtime system for accelerator clusters, focus-
ing on programmability in the complex environment of distributed-memory
accelerator computing [14]. It provides developers with a dataflow-based par-
allelism model reminiscent of single-GPU programming while transparently
distributing computation across compute nodes. In order to ease adoption
and leverage existing standards as far as possible, its programming interface is
closely related to the established SYCL API, with minimal extensions required
for operation on distributed memory [6].

Celerity is built around fully distributed and asynchronous task and com-
mand graph generation, which has previously been shown to scale up to 128
GPUs for compute-intensive algorithms [12]. However, prior to this work,
Celerity’s implicit communication model was exclusively implemented through
asynchronous MPI point-to-point operations.

1.3 Case Study: Direct N -Body Simulation

To familiarize the reader with the Celerity model and demonstrate the per-
formance impact of collective communication later in this paper, we showcase
the implementation of a direct gravitational N -body simulation as defined by

vi,t+1 := vi,t +
∑
j ̸=i

Gmj(pj − pi)

∥pj − pi∥3
∆t, pi,t+1 := pi,t + vi,t+1∆t, (1)

where p are 3-dimensional body positions, v their velocities, m their masses,
G the gravitational constant and t are time steps of length ∆t.

The abbreviated Celerity program in listing 1 represents this system in two
virtualized buffers P and V . In a loop, it submits two kernels per time step:
time_step computes vi,t+1 from vi,t by integrating over the entirety of P for
each work item i; then update_p updates pi,t+1 in-place from pi,t+1 and vi,t+1.
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1 using namespace celerity;
2

3 buffer<double3, 1> P(N);
4 buffer<double3, 1> V(N);
5 const double M = 1.0 /* kg */ ;
6

7 distr_queue q;
8 for (double t = 0.0f; t < T; t += dt) {
9 q.submit([&](handler &cgh) {

10 accessor p(P, cgh, access::all(), read_only);
11 accessor v(V, cgh, access::one_to_one(), read_write);
12 cgh.parallel_for<class time_step>(range<1>(N), [=](item<1> i) {
13 double F = 0.0;
14 for (size_t j = 0; j < N; ++j) { F += gravity(p[i], p[j]); }
15 v[j] += M * F * dt;
16 });
17 });
18 q.submit([&](handler &cgh) {
19 accessor v(V, cgh, access::one_to_one(), read_only);
20 accessor p(P, cgh, access::one_to_one(), read_write);
21 cgh.parallel_for<class update_p>(range<1>(N),
22 [=](item<1> i) { p[i] += v[i] * dt; });
23 });
24 }

Listing 1 Simplified implementation of direct N -body simulation in Celerity.

Each kernel is submitted as part of an asynchronous command group, which
ties the kernel function to an execution geometry (lines 12 and 21) and any
number of buffer accessors (lines 10–11 and 19–20).

The execution geometry describes parallelization through a dimensionality
(here 1), an execution range (here N), a work item offset (implicitly 0 here)
and a work-group size (implicit and implementation-defined here).

Through lambda captures, accessors inject device-buffer pointers into the
kernel while providing the scheduler with metadata in the form of an ac-
cess mode (here read_only, read_write) and a range mapper (here all and
one_to_one).

1.4 Range Mappers

Range mappers are an essential concept of the Celerity model, mapping sub-
ranges of the execution range to sub-ranges of the buffer in an accessor. This
enables the discovery of data requirements after arbitrary work assignment.

Given an execution range E, a range mapper r : P(E) → P(E) is any
pure function that forms a homomorphism over the union of execution sub-
ranges:

r(E1 ∪ E2) = r(E1) ∪ r(E2) ∀E1, E2 ⊂ E (2)
Any range mapper r that is used in a writing access is further required to

be non-overlapping to allow tracking of the unique producer for any buffer
item:

E1 ∩ E2 = ∅ ⇒ r(E1) ∩ r(E2) = ∅ ∀E1, E2 ⊂ E (3)
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Celerity ships a selection of built-in range mapper functions. Relevant
to the following discussion are one_to_one (the identity function, requires
equal kernel and buffer dimensions), all (constant, accessing the entire buffer
range) and transposed (an isomorphic shuffling of dimensions). Out of these,
one_to_one and transposed exhibit the non-overlapping property, while all
does not.

1.5 Graph-Based Scheduling

Celerity’s parallel schedule is derived from the flow of command group sub-
missions in two steps: The high level task graph, constructed synchronously on
all participating nodes, describes execution on a cluster-wide level. From this
task graph, each rank generates an individual command graph that models the
kernel launches and communication steps performed within the node.

Work is assigned to accelerators by splitting the global execution range into
near-equally-sized sub-ranges while observing any constraints imposed by the
execution geometry. As one Celerity process usually drives all accelerators of
a cluster node, scheduling will produce multiple execution sub-ranges locally.
The graph generation process itself does not involve communication.

State-of-the-art Celerity resolves data-flow dependencies between nodes to
point-to-point transfers. In this approach, each node tracks the buffer sub-
ranges produced by kernels within its address space through a combination of
R-trees [3], from which inbound communication sub-ranges (await-push com-
mands) and outbound communication targets (push commands) are derived.
Lowered to MPI point-to-point primitives, these commands satisfy any data
access pattern that can be described by the range-mapper model.

Figure 1 shows an excerpt of the task and command graphs resulting from
Listing 1. Here, as Celerity decides to assign the same execution sub-ranges to
the same nodes across kernels, only the all-read requirement of time_step
necessitate communication. The corresponding command graph contains M−1
push commands and one await-push command on every node out of M .

1.6 Multi-Device Execution and Memory Coherence

Each Celerity process generates and streams its command graph to its executor
thread, which drives all accelerators addressable by the node. The executor
dynamically establishes memory coherence between host and device memories
by tracking buffer writes and replications in separate R-trees, issuing memory
transfers before passing kernels to the SYCL backend.

While this lazy-update approach effectively balances irregular workloads,
missing context about the higher-level operation each sequence of commands
is part of can leads to sup-optimal execution patterns at times. This holds
especially true for the all-gather pattern found in our N -body simulation, for
which the executor will issue a coherence update for every incoming transfer
(M − 1 for M nodes) instead of coalescing them into a single transfer.
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time_step {1...N}

read P {1...N}

read-write V (identity)

update_p {1...N}

read V (identity)

read-write P (identity)

time_step {1...N}

read P {1...N}

read-write V (identity)

...

tasks

time_step {1...N/2}

read P {1...N}

read-write V (identity)

update_p {1...N/2}

read V (identity)

read-write P (identity)

push to N1

P {1...N/2}

time_step {1...N/2}

read P {1...N}

read-write V (identity)

...

await-push

P {N/2...N}

push to N1

P {1...N/2}

push to N1

P {1...N/2}

(one push

per sibling-

node each)

time_step {N/2...N}

read P {1...N}

read-write V (identity)

update_p {N/2...N}

read V (identity)

read-write P (identity)

push to N1

P {1...N/2}

time_step {N/2...N}

read P {1...N}

read-write V (identity)

...

await-push

P {1...N/2}

push to N1

P {1...N/2}

push to N0

P {N/2...N}

node 0 commands node 1 commands

Fig. 1 Task graph (left) and command graphs (right) of a point-to-point communication
schedule for direct N -body simulation from listing 1 on M = 2 nodes. We show tasks up to
the second time_step kernel submission and hint at the additional push commands (grey)
that would be required for a command graph on M > 2 nodes.

2 Related Work

Uncovering and exploiting opportunities for collective communication in user
programs has been examined from different angles in recent literature.

These approaches can be broadly categorized into bottom-up schemes dis-
covering collective patterns through centralized analysis of existing point-to-
point programs, and top-down methods which derive these patterns from high-
level cluster-wide representations and can frequently be coordination-free.

Knüpfer et al. [7] perform post-hoc, bottom-up analysis of application
traces with MPI point-to-point communication, hinting potential sites for col-
lective communication to the application developer help manual refactoring.

Hoefler et al. [4] use compiler transformations to replace point-to-point
operations with library function calls that build a communication DAG at
runtime. In a centralized bottom-up analysis pass, this approach reliably de-
tects all regular (i.e. non-MPI_*[vw]) collective patterns. By re-using optimized
schedules across program iterations, the authors are able to amortize the over-
head of their optimization.

libWater [2] is an OpenCL-based runtime that dynamically offloads work
from a designated root node to devices attached to other MPI processes. In
a bottom-up scheme, it detects gather, scatter and broadcast patterns among
the point-to-point commands generated as part of data redistribution pass and
inserts MPI collective operations accordingly.

Denis et al. [1] extend the PaRSEC runtime to opportunistically discover
broadcast patterns bottom-up during task graph build time. To avoid the
synchronization penalty from orchestrating a call to MPI_Bcast from otherwise
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independent schedulers, the sending node initiates a binomial-tree broadcast
through point-to-point messages which are forwarded by intermediate nodes.

In a top-down approach, the cluster backend of SkePU [8] leverages MPI
collectives to exchange data between operations where applicable. The rigid
skeleton model significantly eases the modelling of global data movement and
computational patterns when compared to Celerity, which must allow near-
arbitrary non-overlapping writes based on range mappers.

Collective Pattern Discovery as presented in the remainder of this docu-
ment falls into the top-down category, analyzing data requirements of a par-
allelized task-graph through a distributed and coordination-free algorithm.

3 Collective Pattern Discovery

Collective Pattern Discovery (CPD) is a novel, deterministic, synchronization-
and coordination-free method for detecting instances of all five collective data
exchange patterns found in section 1.1. In two phases, CPD transforms both
the replicated task graph and the per-node individual command graph to iden-
tify dataflow edges that can profit from eager collective communication.

By guaranteeing that all nodes generate collective commands in identical
order regardless of individual work assignment, it satisfies the MPI requirement
that all ranks in a communicator participate in every collective operation.

3.1 Forward Task Generation

The first step in Collective Pattern Discovery (CPD) locates potential edges
in task graph, where an eager collective operation may preempt later point-
to-point buffer updates that would be inserted lazily on command generation.

Although the task graph is oblivious to communication and fully indepen-
dent of the underlying cluster configuration (including the number of partici-
pating nodes), it must still keep track of collectives to guarantee that all nodes
participate in the same operations. This also avoids inadvertently exchanging
buffer ranges multiple times, as the task graph will reveal whether a dataflow
dependency terminates at the original data producer or whether there are
intermediate tasks for which the data has potentially been exchanged before.

CPD thus inserts a forward task whenever a read-requirement of task c
(the consumer) would introduce the first task-level dependency on the original
writer task p (the producer) for the accessed region (algorithm 1).

To maximize the number of forward tasks that result in non-trivial col-
lective communication after work assignment, CPD ignores any task edges
it deems to be communication-free by assuming that tasks which share an
execution geometry will receive identical work assignment in the scheduler.
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Rt,B := read-set of task t on buffer B
Wt,B := write-set of task t on buffer B
W ∗

t,B := subset of Wt,B not overwritten by any subsequent task
At(F ) := {r | r is a range mapper in t ∧ r(Et) ∩ F ̸= ∅}

procedure IsCommunicationFree(p, c, F )
{Assume tasks of identical geometry will have identical work assignment}
if F = ∅ then return True
else if either p or c is a forward task then return False
else if p and c have different execution geometry then return False
else if Ap(F,write) = Ac(F, read) then return True
else return False

procedure GenerateForwardTasks(t)
for each buffer B with Rt,B ̸= ∅ do

for each previous task p ̸= t with W ∗
p,B ∩Rt,B ̸= ∅ do

F ←W ∗
t,B ∩Rt,B

for each task c /∈ {t, p} dependent on p do
if not IsCommunicationFree(p, c, W ∗

p,B ∩Rc,B) then
F ← F \Rc,B

if not IsCommunicationFree(p, t, F ) then
insert forward-task f with dependencies p→ f → t
Rf,B ←Wf,B ← F

Algorithm 1 Forward-task generation for a command-group task t

3.2 Eager Collective Command Generation

In the Celerity model, work assignment and thus the number of nodes par-
ticipating in a task is a function of the execution geometry and the number
of nodes and accelerators in the system. This ensures that command graph
generation, while distributed, agrees on a single global schedule. Our imple-
mentation guarantees this through fully-static scheduling, although dynamic
methods and still apply even with CPD, provided that they remain determin-
istic and reproducible around forward tasks.

After work assignment, the second step of CPD materializes forwards be-
tween producer and consumer tasks as collective commands if they match
one of the patterns found in table 1. Any non-matching forward task is dropped,
and communication will proceed through the general point-to-point algorithm.

The pattern matching approach is independent of the exact buffer regions
each node accesses, rather, the collective operation is determined in constant

collective producer
nodes

consumer
nodes

producer
range mappers

consumer
range mappers

gather M 1 non-overlapping any
all-gather M M non-overlapping constant
broadcast 1 M non-overlapping constant
scatter 1 M non-overlapping non-overlapping
all-to-all M M — non-trivial transposition —

Table 1 Discovery patterns for collective operations on M > 1 nodes
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time_step  ������

read �  ������

read-write V (identity)

update_p {1...N}

read V (identity)

read-write P (identity)

forward

P {1...N}

time_step {1...N}

read P {1...N}

read-write V (identity)

...

tasks

time_step {1...N/2}

read P {1...N}

read-write V (identity)

update_p {1...N/2}

read V (identity)

read-write P (identity)

all-gather

read P {1...N/2}

write P {1...N}

time_step {1...N/2}

read P {1...N}

read-write V (identity)

...

time_step {N/2...N}

read P {1...N}

read-write V (identity)

update_p {N/2...N}

read V (identity)

read-write P (identity)

all-gather

read P {N/2...N}

write P {1...N}

time_step {N/2...N}

read P {1...N}

read-write V (identity)

...

node 0 commands node 1 commands

Fig. 2 Task graph (left) and command graphs (right) of a direct N -body simulation with
Collective Pattern Discovery. The forward task on P materializes as a all-gather operation,
replacing the push-await cascade seen in figure 1.

time from the number producer and consumer commands and range-mapper
metadata. The non-overlapping property of producer (writer) range mappers
is assumed to hold by definition (see section 1.4). Our implementation detects
constant and non-overlapping consumer range mappers as well as transposi-
tions through meta-programming on the range-mapper functions.

The common gather, all-gather, scatter and broadcast patterns are identi-
fied by analyzing read- and write range mappers in separation.

The all-to-all communication pattern is identified through a consumer ac-
cess that forms a non-trivial transposition of the corresponding producer, i.e.
one that is not communication-free after work assignment:
1. Producer task p has exactly one write range mapper w; consumer task c

exactly one read range mapper r participating in the forwarded region F
2. It holds that w(Ep) = r(Ec) = F
3. For any dimension d, all mappings of nodes i to produced buffer ranges

wd(Ep,i) and rd(Ec,i) are either constant or the identity function
4. There exists d such that wd(Ep,i) is constant while rd(Ec,i) is the identity
5. There exists d such that wd(Ep,i) is the identity while rd(Ec,i) is constant.

Figure 2 visualizes the effects of Collective Pattern Discovery on command-
graph generation for the N -body simulation in listing 1.

Collective Pattern Discovery first analyzes the data flow between the initial
time_step and update_p tasks. Since producer and consumer both access
buffer V through the same identity range mapper and the tasks have identical
execution geometry, the edge is considered to be communication-free and no
forward task is generated.

The read of P{1 . . . N} by the second time_step kernel however applies
a different range mapper than the producer update_p. As the buffer has not
been read by any task since, CPD inserts a forward task on P{1 . . . N}.
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After work assignment, the producer–consumer relationship around P con-
nects an M -node non-overlapping producer to a M -node constant consumer,
matching the all-gather pattern of table 1. Celerity thus inserts an all-gather
command on each node, which becomes the new writer of P{1 . . . N}.

Since all data requirements of the second time_step are now fulfilled, no
additional push-await pairs are generated during dependency analysis.

3.3 Collective Command Execution

Celerity lowers all collective commands to their non-blocking MPI counterparts
(e.g. MPI_Iallgatherv). As required by the standard, these operations are
initiated in-order, but can overlap for the remainder of their execution time.

Since each process potentially drives multiple accelerators, the runtime
compiles larger device-to-device collectives from the host-to-host MPI opera-
tions by issuing local memory transfers before and after the MPI invocation.

Knowledge about the cluster-wide collective operation provides optimiza-
tion potential beyond the lazy coherence update mechanism (section 1.6) em-
ployed for point-to-point transfers: Celerity will issue a parallel device broadcast
to update all accelerator memories after completing an MPI collective opera-
tion with receiver-broadcast semantics (broadcast and all-gather patterns).

4 Evaluation

To assess the performance characteristics of Collective Pattern Discovery in
isolation, we implement a set of synthetic benchmarking applications that
require communication between device memories (table 2).

Where applicable, one-to-all communication is paired with an all-to-one op-
eration to maintain meaningful dataflow throughout the programs. As control
we study the overhead of CPD on a stencil-like program with a neighborhood
exchange pattern that does not benefit from collective communication.

benchmark step kernel reads writes

all-gather N B ← {1 . . . N} B′ ← identity

gather-scatter 1. 1 B ← {1 . . . N} B ← {1 . . . N}
2. N B ← identity B′ ← identity

gather-bcast 1. 1 B ← {1 . . . N} B ← {1 . . . N}
2. N B ← {1 . . . N} B′ ← identity

all-to-all N×N B ← transpose(0, 1) B′ ← identity

stencil (control) N×N B ← neighborhood(1, 1) B′ ← identity

Table 2 Access patterns of the synthetic benchmarks examined in this section. Executing
the steps of each program in a loop generates detectable collective communication patterns
(except stencil). After each iteration, buffers B and B′ are swapped.
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Fig. 3 Scheduler throughput for each program listed in table 2 (higher is better). Reported
is median of 100 benchmarks together with minima and maxima.

All benchmarks in this section were run on the Marconi-100 supercomputer
in Bologna, Italy, rank 26 of the TOP500 list as of June 20231. It is a cluster
of 980 IBM Power AC922 nodes with four Nvidia Volta V100 GPUs each,
intra-node NVLink 2.0, and dual Infiniband EDR system interconnect.

Celerity was built using Clang 12.0.1 and OpenSYCL 0.9.22 with -O3 op-
timization, linking against CUDA 11.7 and IBM Spectrum MPI 10.4.0. All
binaries were executed with mimalloc 2.0.93 replacing the system allocator.

4.1 Scheduling Microbenchmarks

Celerity generates task- and command graphs concurrently with kernel ex-
ecution and data transfers. Scheduling latency can thus usually be hidden
after startup, but applications with very short device kernels may become
throughput-limited.

By isolating the scheduling process, we can analyze scheduler throughput
as a function of node count. Each node must compute the work assignment of
every other node in the system to detect potential non-collective data require-
ments. The number of communication commands tracked however remains
constant with CPD while increasing linearly with point-to-point communica-
tion.

Figure 3 demonstrates that all patterns except gather-scatter greatly profit
from CPD’s reduction in tracking complexity, with all-gather achieving a
more than 3× throughput increase for 256 nodes. For small node counts,
the constant-time overhead of forward-task generation yields a visible drop
in scheduler performance, both for collective and non-collective patterns. As
we will show in section 4.2, this reduction in throughput is negligible for large-
scale runs.

1 https://www.top500.org/lists/top500/list/2023/06/
2 https://github.com/OpenSYCL/OpenSYCL/releases/tag/v0.9.2
3 https://github.com/microsoft/mimalloc/releases/tag/v2.0.9

https://www.top500.org/lists/top500/list/2023/06/
https://github.com/OpenSYCL/OpenSYCL/releases/tag/v0.9.2
https://github.com/microsoft/mimalloc/releases/tag/v2.0.9


12 Fabian Knorr et al.

4 8 16 32 64 12
8

25
6

0

10

20

×1
00

 it
er
at
io
ns
 / 
s

all-gather
16 KiB buffer

4 8 16 32 64 12
8

25
6

0

5

10

15

20

gather-scatter
16 KiB buffer

4 8 16 32 64 12
8

25
6

0

5

10

15

20

gather-bcast
1 KiB buffer

4 8 16 32 64 12
8

25
6

0

5

10

15

all-to-all
16 KiB buffer

4 8 16 32 64 12
8

25
6

0

10

20

30

40

stencil (control)
16 KiB buffer

4 8 16 32 64 12
8

25
6

0

5

10

15

20

×1
00

 it
er
at
io
ns
 / 
s

1 MiB buffer

4 8 16 32 64 12
8

25
6

0

5

10

15

20

1 MiB buffer

4 8 16 32 64 12
8

25
6

0

5

10

15

20

128 KiB buffer

4 8 16 32 64 12
8

25
6

0

5

10

15
1 MiB buffer

4 8 16 32 64 12
8

25
6

0

5

10

15

20

1 MiB buffer

4 8 16 32 64 12
8

25
6

0.0

0.5

1.0

1.5

×1
00

 it
er
at
io
ns
 / 
s

64 MiB buffer

4 8 16 32 64 12
8

25
6

0

1

2

3

64 MiB buffer

4 8 16 32 64 12
8

25
6

0

2

4

6

8

8 MiB buffer

4 8 16 32 64 12
8

25
6

0

2

4

6

64 MiB buffer

4 8 16 32 64 12
8

25
6

0

5

10

15

20

64 MiB buffer

4 8 16 32 64 12
8

25
6

GPUs

0.00

0.05

0.10

×1
00

 it
er
at
io
ns
 / 
s

1 GiB buffer

4 8 16 32 64 12
8

25
6

GPUs

0.00

0.05

0.10

0.15

0.20

1 GiB buffer

4 8 16 32 64 12
8

25
6

GPUs

0.0

0.2

0.4

0.6

128 MiB buffer

4 8 16 32 64 12
8

25
6

GPUs

0.0

0.5

1.0

1.5

1 GiB buffer
4 8 16 32 64 12
8

25
6

GPUs

0

5

10

15

20

1 GiB buffer

point-to-point communication only (baseline) with collective pattern discovery (new)

Fig. 4 Throughput of communication-only system benchmarks from table 2 with kernel
execution disabled (higher is better). Shown is a mixed bar-box plot containing the median,
center quartiles and minima / maxima over 20 runs on varying node configurations. Each
measurement is the mean over 20 iterations.

4.2 Communication-Only System Benchmarks

As Celerity is structured around accelerator computation, we benchmark device-
to-device transfer performance specifically by executing the synthetic bench-
marks from table 2 with and without CPD while disabling kernel execution.

Figure 4 visualizes the communication throughput achieved as benchmark
iterations per second. All collective patterns profit massively from reduced
overheads on small buffer sizes, and all except gather-scatter can consistently
take advantage of reduced bandwidth requirements on larger-sized buffers.

For large node counts, we can observe a high variance in the performance
of MPI collective communication, which is caused by process scheduling dif-
ferences on part of the SLURM workload manager.
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Fig. 5 Strong-scaling speedup of 20
time steps of the direct N -body sim-
ulation for N = 1,048,576 in double
precision. We report the median, cen-
ter quartiles and minima / maxima over
20 benchmark runs allocated to vary-
ing node configurations by the workload
manager.

The non-collective stencil program shows no difference in communication
times between enabling or disabling CPD, demonstrating that the increase in
scheduler latency seen in figure 3 can be fully hidden.

4.3 Strong Scaling Experiment: Direct N -Body Simulation

To evaluate the efficacy of CPD on a full application, we implement and opti-
mize the direct N -body simulation from section 1.3 as a Celerity application.
Compared to the simplified listing 1, we use an array-of-struct (AOS) to struct-
of-array (SOA) transformation on P and V , increase parallelism in time_step
by writing one item in V per 32 threads and reduce the required global-memory
bandwidth in the same kernel by shared-memory tiling the read of V .

We choose a strong-scaling experiment specifically to showcase the effects
of transitioning from a compute-bound to a communication-bound problem as
the node count increases. Figure 5 shows the speedup attained from a varying
number of GPUs participating in the simulation of N = 1,048,576 bodies.

Up to 64 GPUs (16 nodes), both point-to-point and collective communica-
tion scale equally. Increasing beyond 128 GPUs yields no additional speedup
for the point-to-point configuration, but does so significantly when Collective
Pattern Discovery is enabled.

Profiling reveals that scalability in this case is limited primarily by latency
of small host-to-device copies for every incoming message, which CPD can
effectively reduce through the use of a device broadcast (section 3.3).

5 Conclusion

This work introduces Collective Pattern Discovery (CPD), a novel, distributed
and coordination-free method for reliably identifying opportunities for collec-
tive communication in the parallelized task graphs of the Celerity model.

In a two-stage approach, CPD identifies task graph edges suitable for eager
communication in the form of forward tasks and matches the concrete data
exchange pattern after work assignment to generate per-node collective com-
mands. This transforms a large class of distributed-memory interactions into
collective operations while reliably avoiding duplicated communication.
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Through synthetic scheduling and communication benchmarks, we demon-
strated how CPD reduces tracking overhead of large runs in the runtime system
by replacing a linear number of point-to-point communication pairs with sin-
gular collective operations. On large transfers, this transformation allow us to
profit from decades of research on MPI collective optimization.

In a strong-scaling experiment, we were able to prove sizable gains in scal-
ability over the point-to-point model, effectively scaling a direct N -body sim-
ulation implemented in Celerity to 256 GPUs for the first time.

5.1 Limitations and Future Work

While demonstrably highly efficient in common settings, the graph transfor-
mations performed by Collective Pattern Discovery (CPD) cannot claim algo-
rithmic optimality in the general case. For example, the eager generation of
forward tasks masks the original producer task of the forwarded buffer sub-
region: if the forward is not materialized, or later tasks would benefit from a
superset of the generated collective (e.g. a logical all-gather access following
a simple gather), an opportunity for collective communication will be missed.
Future work could be able to improve CPD in these situations through a
lookahead scheme analyzing longer sequences of tasks at once.
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Abstract As a result of frequency and power limitations, multi-core pro-
cessors and accelerators are becoming more and more prevalent in today’s
systems. To fully utilize such systems, heterogeneous parallel programming
is needed, but this introduces new complexities to the development. High-
level frameworks such as SkePU have been introduced to help alleviate these
complexities. SkePU is a skeleton programming framework based on a set of
programming constructs implementing computational parallel patterns, while
presenting a sequential interface to the programmer. Using the various skele-
ton backends, SkePU programs can execute, without source code modification,
on multiple types of hardware such as CPUs, GPUs, and clusters. This paper
presents the design and implementation of a new backend for SkePU, adding
support for FPGAs. We also evaluate the effect of FPGA-specific optimizations
in the new backend. For simple examples, we find that the FPGA-backend’s
performance is similar to that of the existing backend for GPUs, while it falls
behind in more complex tasks. Finally, some shortcomings in the backend are
highlighted and discussed, along with potential solutions.

Keywords algorithmic skeletons · reconfigurable computing · FPGA ·
single-source heterogeneous programming

1 Introduction

For a long time, the trend in computer architecture has been the move to multi-
core processors. Additionally, the use of accelerators such as massively parallel
GPUs has increased, leading to many of today’s systems being heterogeneous.

An alternative accelerator to GPUs is the field-programmable gate array
(FPGA). The strength of FPGAs is that they can be reconfigured and adapted
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for the type of algorithms to execute, mapping an algorithm one-to-one to the
FPGA hardware. This involves "programming" the FPGA using a Hardware
Description Language (HDL) such as VHDL or Verilog [6]. The HDLs are used
to generate a circuit description which is loaded onto the FPGA.

Historically, this process of programming FPGAs has required specialized
training since HDLs lack many high-level constructs found in conventional
programming languages and use a parallel data flow model rather than a
sequential one. There are also differences between FPGA platforms, leading
to difficulties of reusing existing designs [12]. To alleviate these issues, there
have been many attempts to create tools that utilize higher level languages,
such as C or C++, to automatically produce a circuit specification in a HDL.
These high-level synthesis (HLS) tools allow developers to program FPGAs
faster and without hardware expertise [18]. More recently, both Intel1 and
Xilinx2 introduced HLS toolchains based on OpenCL, a framework for creating
portable parallel programs targeting multiple types of platforms.

While these tools make it easier to program FPGAs, developers still need to
handle the challenges of programming against heterogeneous processors. This
includes communication, memory management and synchronization. Here, ske-
leton programming frameworks can provide a more high-level interface for the
developer [11] by abstracting from some of the more complex interactions and
specifics of a multiprocessor system. One such framework is SkePU3, an open-
source skeleton programming framework for heterogeneous parallel systems.
Today SkePU supports multi-core CPUs, GPUs and clusters. By adding sup-
port for FPGAs, it would allow developers to program FPGAs without the
need for hardware expertise or deep knowledge of OpenCL.

To this end, we design and implement a new backend in SkePU targeting
reconfigurable architectures by integrating an existing OpenCL HLS toolchain.
This will allow SkePU to further accelerate the types of problems that FPGAs
are particularly suitable for, such as problems that can take advantage of the
high-throughput pipelines that FPGAs can create, while keeping full source-
code portability with multicore CPU, GPU and cluster execution.

Overall, this paper makes the following main contributions:
– We present the design and implementation of a new OpenCL-based back-

end for FPGA, including FPGA-specific optimizations, atop Intel OpenCL
SDK for FPGA, for the SkePU skeletons Map, Reduce, MapReduce, Scan,
and MapOverlap.

– We evaluate the FPGA backend on an Intel Programmable Acceleration
Card with an Arria 10 GX FPGA. We demonstrate the great performance
benefit of applying FPGA-specific optimizations such as loop unrolling,
register pipelining and skeleton fusion in the backend. We also identify
challenges for future improvements of the FPGA backend, such as perfor-
mance issues with complex kernels.

1 https://www.intel.com/content/www/us/en/software/programmable/
sdk-for-opencl/overview.html

2 https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/ehb1504034292718.html
3 https://skepu.github.io/

https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/ehb1504034292718.html
https://skepu.github.io/
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1 #include <skepu>
2
3 float mult(float a, float b) { return a * b; }
4 float add(float a, float b) { return a + b; }
5
6 int main(int argc, char *argv[])
7 {
8 size_t const size = 100;
9 skepu::Vector<float> a(size), b(size);

10 auto dot_product = skepu::MapReduce(mult<float>, add<float>);
11 float res = dot_product(a, b);
12 }

Listing 1: SkePU program that calculates the dot product of two vectors.

The remainder of this paper is organized as follows: Section 2 presents
background on algorithmic skeletons and SkePU, and Section 3 on FPGAs.
Section 4 discusses related work. Section 5 presents the implementation of
the FPGA backend, Section 6 experimental results and discussion. Section 7
concludes and proposes future work.

2 Skeleton programming and SkePU

Skeleton programming is a programming model offering pre-built skeletons,
generic programming constructs derived from higher-order functions that match
different computation patterns for which parallel implementations are provided
by the framework. Problem-specific user code is inserted as function arguments
(user functions) into a skeleton to instantiate a complete algorithm [5].

SkePU [9] is a C++ open-source skeleton programming framework that
provides an interface to create parallel computations with support for different
backends: sequential, multi-core CPU (OpenMP), GPU (CUDA or OpenCL),
cluster (StarPU-MPI), and combinations of those. SkePU programs define user
functions that the skeletons use as operators. SkePU contains a source-to-
source compiler that translates user functions for each backend and a runtime
library that handles the scheduling, communication and memory management
between the host and backend [10]. Listing 1 shows an example SkePU program
that calculates the dot product of two vectors, using the MapReduce skeleton
and two user functions: mult and add.

SkePU implements a set of data-parallel skeleton patterns. The basic Map
is a fundamental building block in SkePU programs, as it provides a flexible
interface, e.g., with variadic input and output arity and optional use of non-
trivial memory access patterns. MapOverlap and MapPairs are optimized
extensions of Map for stencil computations and Cartesian-product patterns,
respectively. Similarly, Reduce and Scan are specialized patterns for reduc-
tions and prefix sums. SkePU offers efficient combinations when a reduction is
used after a map-based pattern through MapReduce and MapPairsReduce.
Each skeleton is instantiated with one or more user functions, which contain
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the program-specific code, executed in parallel according to the respective
pattern semantics.

SkePU provides so-called smart data-containers [7] that manage memory
and coherency between host and backends automatically. In the latest version
of SkePU there are four different types of smart containers for four different
dimensionalities: Vector (1D), Matrix (2D), Tensor3D and Tensor4D.

Smart containers are C++ objects in main memory and can therefore not
be used directly in user functions. While this is not needed for element-wise
access, some computations require access to all elements in a container. SkePU
therefore provides proxy containers which can be used to access any element in
a container inside a user function, along with other types for partial container
access.

3 Field-programmable gate arrays (FPGAs)

FPGAs are computer chips that can be programmed to implement different
digital circuits. The term comes from the fact that FPGAs are programmable
in-field even after deployment. They consist of an array of configurable logic
and I/O blocks that are connected through a network with programmable
switches. Modern FPGAs often also have hard blocks, blocks that cannot be
programmed but instead implement a specific functionality such as multipliers
or Ethernet interfaces. Another common hard block is RAM, since implement-
ing RAM using the configurable logic is much less area efficient [4].

Programming an FPGA is divided into three stages. First the desired hard-
ware circuit is described in an HDL. This is then translated to logic gates via
synthesis, which generates the physical design. Later, the place-and-route stage
maps the physical design to a device. In both these steps, constraint checks
ensure that the design will fit on the chosen device and has no timing errors.
Finally, a hardware configuration file, a bitstream, is generated which can be
loaded onto the FPGA. The process can take hours or days to complete [2].

Hardware description languages (HDLs) describe the hardware circuits that
are programmed to FPGAs. While HDLs might look procedural, they are very
different. For example, rather than a sequential control flow model, HDLs use
a data flow model where statements can run in parallel whenever the input is
changed.

Since HDL code represents the hardware it synthesizes to, an understand-
ing of circuit design is required to get the best use out of an FPGA. To make
FPGA programming easier, there has been focused attention in the indus-
try to create high-level synthesis (HLS) tools for converting code written in
a high-level language to HDL code [2]. The generated HDL code can then be
synthesized using the normal FPGA programming flow.

Since synthesis takes multiple hours, the standard OpenCL kernel just-
in-time compilation cannot be used. Instead, the SDK compiles OpenCL into
Verilog, which is passed to a synthesis program. The compiler is an extension of
the LLVM compiler which first produces a LLVM intermediate representation
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Fig. 1 Intel OpenCL SDK compilation flow. AOC is the OpenCL compiler in the SDK.

of the kernel, from which Verilog code is produced, followed by the normal
FPGA programming flow of synthesis and place-and-route [6]. Figure 1 shows
the compilation flow when using the SDK.

The SDK also includes libraries for the host application to program the
FPGA with the generated bitstream and communicate with the kernel us-
ing the OpenCL API. These libraries do not need to be referenced explicitly
in the host application: as long as they are included when compiling, they
will automatically be called when using the OpenCL API. To use the SDK,
a board support package (BSP) is required. The BSP includes the drivers to
communicate between the FPGA, the host and the hardware configuration
for generating interfaces between the OpenCL kernel and the FPGA, such
as the external memory or the PCI-E. The BSP is provided by the FPGA’s
manufacturer and is unique to each FPGA platform. They allow the manufac-
turer to provide interfaces to hard blocks specific to their FPGA, like on-board
networking or signal processors.

Czajkowski et al. [6] state that the reason for choosing OpenCL over a
high-level language is the separation between the host and kernel. The kernel
can be implemented as a highly performant hardware circuit while the host
can handle the communication and programming of the FPGA. This means
that the entire system can be implemented as opposed to other HLS tools that
only generate HDL code for synthesis.

The SDK generates hardware pipelines based on the OpenCL code in the
kernel. A pipeline’s size is measured in terms of its depth, which is how many
stages there are before the final output, and its width which is how many
operations are done in parallel in each stage. The SDK supports two execu-
tion models: NDRange and Single Work-Item. Both use pipelining to achieve
parallelism, but differ in how they issue new data into the pipeline.

NDRange model When using the NDRange model, the kernel is executed once
for each work-item. This is the model most commonly used on GPUs, as mul-
tiple work-items can execute in parallel. As FPGAs do not have multiple pro-
cessing elements, pipelining is used instead. Each region between subsequent
barrier calls will generate an independent pipeline that is flushed at the barrier.
The work-items are issued into the pipeline iteratively by a run-time sched-
uler generated in hardware. If the kernel references any of the indices in the
NDRange or uses a barrier, the kernel is interpreted as a NDRange kernel [23].
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1 __attribute((num_simd_work_items(2)))
2 __kernel void sum( __global float* a, __global float* b,
3 __global float* result) {
4 int gid = get_global_id(0);
5 result[gid] = a[gid] + b[gid];
6 }

Listing 2: Example of kernel vectorization.

1 __kernel void sum( __global float* a, __global float* b,
2 __global float* result) {
3 int gid = get_global_id(0);
4 result[gid * 2 + 0] = a[gid * 2 + 0] + b[gid * 2 + 0];
5 result[gid * 2 + 1] = a[gid * 2 + 1] + b[gid * 2 + 1];
6 }

Listing 3: Manual kernel vectorization.

The SDK’s programming and best practice guides recommend two tech-
niques for better performance: Kernel vectorization and compute unit replica-
tion. Kernel vectorization is achieved by using the num_simd_work_items(N)
attribute (as seen in Listing 2), which instructs the compiler to translate each
scalar operator to a SIMD operation. This allows the programmer to increase
the throughput of the kernel without any modifications to the kernel code
or NDRange used in the invocation of the kernel [20]. The vectorization fails
if the kernel contains code that the compiler deems “SIMD-unfriendly”, such
as thread-dependent branching. Vectorization can be done manually, like in
Listing 3, but then the NDRange must be manually changed to match the
number of items each kernel handles.

For compute unit replication, using attribute num_compute_units(N)
instructs the compiler to replicate the full pipeline N times. Work-groups are
split across all compute units, scheduling is handled by a hardware scheduler.

Both methods increase throughput by increasing the amount of hardware
generated. It is recommended to first use kernel vectorization, as this generates
coalesced memory accesses and less total hardware. The methods can also be
combined, which can give better throughput depending on what type of work
the kernel performs [16].

Single work-item model In the Single Work-Item model, the kernel is executed
only once as a single work-item. High performance is achieved by pipelining
loop iterations, mapping each outer loop to a separate pipeline. This allows
multiple loop iterations to be computed in parallel, allowing a pipelined loop to
finish faster than a non-pipelined loop. No run-time scheduler is used, instead
the scheduling is determined at compile-time. The initiation interval II [1]
is the number of clock cycles between two subsequent loop iterations being
issued into the pipeline. For a pipelined loop with an input size of L and a
depth of P , the total amount of clock cycles to complete is

Tcycles = P + II ∗ (L− 1) (1)



High-Level Programming of FPGA-Accelerated Systems with Parallel Patterns 22

which can be converted to time in seconds by Tseconds = Tcycles/fmax, where
fmax is the operating frequency of the FPGA. As fmax is often fixed for each
FPGA, P not contributing much to the execution time and L being application
dependent, II is the one parameter the developer can change with the largest
impact on the performance of a single work-item kernel. The compiler always
tries to pipeline loops so that the II is 1, but loop-carried dependencies like
data dependencies or memory dependencies can cause the II to increase. The
run-time II can also differ from the II determined at compile time due to
stallable load and store operations or nested loops [22], so the actual execution
time can be longer than the calculated Tseconds.

Parallelism similar to vectorization can be added to single work-item ker-
nels by unrolling loops, increasing the width and depth of the pipeline at the
cost of more hardware being used. If the length of the loop is known at compile
time, the compiler can fully unroll the loop, otherwise it can be unrolled by
a user-specified factor. On top of increasing parallelism, loop pipelining also
allows the compiler to coalesce memory operations, reducing the amount of
global memory accesses [21]. Equation 1 can be extended with loop unrolling:

Tcycles = P ′ + II ∗ (L−Np)

Np
(2)

where P ′ is the new depth of the pipeline and Np is the unroll factor. Assuming
L >> P ′, unrolling should result in a theoretical performance improvement of
almost Np times. This does, however, not take the run-time II into account,
so in practice the performance improvement will not be as large.

Shift registers is a technique that can be used to relax some loop-carried
dependencies in pipelined loops. Shift registers are implemented using the
FPGA’s registers, which have an access latency of one clock cycle [22], meaning
they can be accessed without increasing the loop’s II. An array in OpenCL
will be implemented as a shift register if (1) the array size is known at compile
time, (2) all accesses to the array are made with addresses known at compile
time, and (3) all content in the array is shifted by a compile-time known
amount in each loop iteration (see Listing 4).

The primary way to use a shift register is to increase the dependency
distance for a variable, by writing values to one end of the shift register and
operating on the other end of the shift register. This way operations that
take more than one clock cycle to perform can be used without increasing the
loop’s II as different loop iterations will operate on different parts of the shift
register. Shift registers can also be used for data sharing across loop iterations
by reusing values across multiple iterations, creating a sliding window [15].
This is especially applicable to computations where a stencil is used, which
otherwise requires multiple redundant memory accesses per loop iteration to
read the input elements for the stencil. If the elements are instead stored
in a shift register, one element being read per iteration, the entire stencil is
accessible in a single clock cycle.
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1 float reg[SIZE + 1] = {0.0};
2
3 for (int i = 0; i < N; ++i) {
4 #pragma unroll
5 for (int j = 0; j < SIZE; j++)
6 // Shifts the content one step per iteration
7 reg[j] = reg[j + 1];
8 reg[SIZE] = reg[0] + input[i]
9 }

Listing 4: Creating and using a shift register in OpenCL.

4 Related work

We review three high-level frameworks similar to SkePU that target FPGAs,
of which two use OpenCL and one is fully implemented in an HDL.

Melia [21] is a MapReduce framework for FPGAs that uses the Intel FPGA
OpenCL SDK. The framework lets the user define a map and reduce func-
tion in the OpenCL C language which are then compiled, synthesized and
programmed to an FPGA. Melia includes memory optimizations such as co-
alescing and "private memory optimization" and applies some FPGA-specific
optimizations: Converting nested loops to a single loop, loop unrolling, and
pipeline replication. Loop unrolling is the only optimization that is performed
automatically on the user functions. The user is responsible for applying mem-
ory optimizations and must pass parameters to Melia for the pipeline repli-
cation and loop unrolling before synthesis. Since synthesis is a long process,
Wang et al. [21] developed a cost model using the resource estimation tool
included in the Intel FPGA OpenCL SDK. The cost model estimates the exe-
cution time of a given OpenCL kernel by multiplying the estimated hardware
frequency and estimated amount of clock cycles needed to execute the kernel.
Through testing they found that their model could closely predict the hard-
ware frequency of a kernel, and generally capture the trend of the required
clock cycles. Using the model, a user can experiment with different param-
eters in a matter of minutes instead of the hours it would take to complete
a full synthesis. Applying the FPGA-specific optimizations to seven common
MapReduce applications led to speedups of 1.4× to 43.6×. The Melia imple-
mentations demonstrated high energy efficiency compared to CPU and GPU
implementations and were not much slower than the GPU implementations.

OpenACC-to-FPGA [16] is a framework for translating OpenACC C pro-
grams to a hardware configuration file for running on FPGAs. It is an extension
of the Open Accelerator Research Compiler (OpenARC) [17], an open-source
compiler for OpenACC which supports CUDA and OpenCL as backend pro-
gramming models using source-to-source translation. OpenACC-to-FPGA uses
the OpenCL backend to generate OpenCL code which is passed to the Intel
FPGA OpenCL SDK to generate the hardware configuration file. To generate
efficient OpenCL code for FPGAs, OpenACC-to-FPGA adds to OpenARC
boundary check elimination and directives for controlling loop unrolling, ker-
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nel vectorization and compute unit replication (pipeline replication). The
OpenACC-to-FPGA runtime performs dynamic memory-transfer alignment
of memory that will be transferred to maximize throughput and lowering la-
tency when transferring data between the host and FPGA memory. Correctly
aligned memory on both the host and device allows the Intel FPGA OpenCL
runtime to use direct memory access (DMA) between host and FPGA, speed-
ing up data transfers. By this method, Lee et al. [16] achieved a 100-fold
speed-up in data transfers between the host and device, in both directions.

In follow-up work, Lambert et al. [15] extend OpenACC-to-FPGA by opti-
mizations for single work-item kernels. First, they added FPGA-specific loop
collapsing, changing the existing OpenARC loop collapsing to calculate the
indexes of the collapsed loops without modulo and divisions operations, which
are relatively expensive on FPGAs. A reduce-specific optimization was also
added. It generates OpenCL code for reduce loops that uses shift registers to
relax the data dependency that can occur in reduce loops when using instruc-
tions that take more than one clock cycle. It also adds a new directive window
which generates OpenCL code for creating a sliding window for stencil oper-
ations. Based on offsets used to access the stencil, it automatically generates
a shift register large enough to store the stencil and the offsets to be used to
access the window inside the shift register. Unlike Melia, OpenACC-to-FPGA
does not provide any tools or models to alleviate the long synthesizing process.

FPMR is a MapReduce framework for FPGAs [19], though unlike Melia
and OpenACC-to-FPGA it does not use any HLS tools. Instead, the frame-
work is implemented in an HDL, providing data synchronization, scheduling
and handling communication between the map and reduce tasks. The user
implements the map and reduce user functions by designing a mapper and
reducer processor using the corresponding interfaces in FPMR. During exe-
cution, a processor scheduler, which is implemented on the FPGA, is used to
dynamically utilize the mapper and reducer processors using a set of queues
for idle processors and tasks for both types of processors.

The framework uses three levels of storage: Global memory, local memory
and register files inside each processor. Global memory is implemented using
SDRAM modules, providing large capacity and high bandwidth. It is managed
by a data controller responsible for transferring data between the host and
device memory, dispatching requested data to the mappers, and storing output
data from the reducers. An important feature of the data controller is the
common data path, which allows the controller to overlap data transfer to
multiple mappers at once. This is useful for applications where some data are
the same for all mappers. The local memory stores the mappers’ intermediate
results before being passed to a reducer. It is implemented with on-chip RAM
giving it low access latency, and if multiple RAMs are implemented, it can
also be accessed simultaneously by mappers and reducers.

In a case study of the RankBoost algorithm using FPMR, Shan et al. [19]
obtained 31.8× speedup over their CPU reference implementation, which was
comparable to a manually designed FPGA implementation with 33.5× speedup.
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Fig. 2 FPGA backend compilation flow.

5 SkePU FPGA Backend

The first part of the implementation was to integrate the Intel FPGA OpenCL
SDK into SkePUs backend code generation. SkePU provides OpenCL files to
the SDK and accepts generated bitstream files in return. The user is respon-
sible for ensuring that an installation of the SDK and the relevant FPGA
board packages are available. The runtime was also extended to recognize
Intel FPGAs and the Intel FPGA emulator as valid OpenCL devices, see
Figure 2. While this initial implementation worked, it used the OpenCL back-
end designed for GPUs, which resulted in subpar performance on FPGAs.
Therefore, a new FPGA-specific backend was created, similar to the OpenCL
backend for GPUs with specialized kernel code generation for the respective
skeletons. Functionality such as device detection and memory management is
shared with the OpenCL GPU backend.

An initial design decision was whether to generate single work-item (SWI)
or NDRange kernels. Using NDRange kernels would have meant that the ex-
isting OpenCL code generation could have been reused. However, those ker-
nels use branches that depend on the global id of the work-items, meaning
that automatic vectorization cannot be applied. This is a key optimization for
NDRange kernels, so new code generation would have had to be done either
way. Furthermore, Intel’s general recommendation is to use SWI kernels, and
they are faster for many types of problems [23,22]. It was therefore decided
to implement code generation of SWI kernels. The main goal for the skeleton
implementations was to reach an II of 1 for the main loop and not reducing
the maximum frequency, while still pipelining the main loop.

The optimization techniques used are taken from Intel’s programming doc-
umentation4,5 and papers that applied the techniques [12,22,23]. The compiler
referenced in the following sections is the Intel FPGA SDK OpenCL Offline
Compiler. The Intel documentation recommends some general optimizations
that can be applied to all kernels, mostly focusing on helping the compiler:

4 https://intel.com/content/www/us/en/docs/programmable/683521/21-4/
introduction-to-pro-edition-best-practices.html

5 https://intel.com/content/www/us/en/docs/programmable/683846/21-4

https://intel.com/content/www/us/en/docs/programmable/683521/21-4/introduction-to-pro-edition-best-practices.html
https://intel.com/content/www/us/en/docs/programmable/683521/21-4/introduction-to-pro-edition-best-practices.html
https://intel.com/content/www/us/en/docs/programmable/683846/21-4
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– Using the restrict keyword on pointer arguments which never alias to
other pointers. This can prevent the compiler from assuming memory de-
pendencies between read and write operations.

– Using the const keyword on any read-only buffers. This allows the com-
piler to perform more optimizations on load operations.

– Applying the uses_global_work_offset(0) attribute. Applying this
attribute allows the compiler to not generate hardware for supporting ker-
nel invocations with a non-zero global_work_offset (which is never
not zero in the FPGA backend), reducing area usage.

SkePU’s memory allocation code was modified to allocate 64-byte aligned
memory for all host buffers. The dynamic memory-transfer alignment logic
used in OpenACC-To-FPGA was also implemented to handle cases when the
buffer is not aligned on the FPGA. This guarantees that both the host and
device buffer will be aligned when transferring memory between them, allowing
all data transfers larger than 64 bytes to use direct memory access.

We now present the implementations of the Map, Reduce, MapReduce,
Scan and MapOverlap skeletons in the FPGA backend.

Map The Map kernel was replaced by a for loop with a controllable unroll
factor. As the loop contains no loop-carried dependencies, it did not require
the use of a shift register or any other techniques to attain an II of 1.

Reduce Firstly, the generated kernel was changed to a single work-item kernel
instead of a NDRange kernel. This meant the kernel could be reduced to a
single for loop, which the compiler can pipeline. However, such reduce loops
often result in a loop-carried data dependency on the reduce variable. If the
user-function is complicated or uses instructions that are expensive to execute
on FPGAs, this cannot be done in a single clock cycle. This will increase the
II of the loop to the number of clock cycles the user function takes.

The reduce kernel tries to relax such data dependencies by increasing the
number of variables that store the intermediate result of the reduction using
a shift register. In each iteration, the head of the shift register is read, and
the partial result is written to the tail of the register. If the size of the shift
register is equal to or greater than the number of cycles that the user-function
takes to execute, the data dependency can be eliminated.

Finally, parallelism is increased by adding partial loop unrolling. This could
be applied to the main loop, but doing so acts as a multiplier to the latency
of the loop [15], increasing the II. There are two ways to solve this: increasing
the size of the shift register by the unroll count or performing manual loop
unrolling as done by Zohouri [22]. Increasing the size of the shift register also
increases the total area consumption, so for large unroll factors this can become
impractical. Therefore manual loop unrolling was used in the reduce kernel.
An example of a generated reduce kernel can be seen in Listing 5, where lines
17-22 show the manual loop unroll.
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1 __kernel void reduce(__global float const* restrict input,
2 __global float* restrict output,
3 unsigned long size)
4 float shift_reg[LATENCY + 1];
5 #pragma unroll
6 for (int i = 0; i < LATENCY; i++) {
7 shift_reg[i] = input[i];
8 }
9 int exit = (size % UNROLL == 0) ?

10 (size / UNROLL) :
11 (size / UNROLL) + 1;
12 for (int i = 0; i < exit; i++) {
13 float partial_result = (
14 LATENCY <= i * UNROLL && i * UNROLL < size
15 ) ? input[i * UNROLL] : (float) {0};
16 #pragma unroll
17 for (int j = 1; j < UNROLL; j++) {
18 int index = i * UNROLL + j;
19 partial_result = (index < size) ?
20 user_func(partial_result, input[index]) :
21 partial_result;
22 }
23 shift_reg[LATENCY] = user_func(shift_reg[0], partial_result);
24 #pragma unroll
25 for (int j = 0; j < LATENCY; j++) {
26 shift_reg[j] = shift_reg[j+1];
27 }
28 }
29 float result = shift_reg[0];
30 #pragma unroll
31 for (int i = 1; i < LATENCY; i++)
32 result = user_func(shift_reg[i], result);
33 output[0] = result;

Listing 5: Example of a generated reduce kernel.

MapReduce The MapReduce kernel used the same approach as the Reduce
kernel, with an added call to the Map user function in the manual loop unroll
and in the ramp-up phase. In the normal OpenCL backend, MapReduce is a
two-phase kernel where the second phase performs a final reduction. This is
not needed in the FPGA version, as the full reduction is performed in a single
kernel execution, making the call to the reduce-only kernel unnecessary.

Scan The Scan kernel uses a shift register and loop unrolling. It begins with a
prelude to populate the shift register, and after that it reads a single element
from the input each iteration and applies it to the user function together with
an element from the shift register, with the result being stored in the end of the
shift register. The shift register is used to avoid the memory dependency that
would otherwise be created when immediately accessing the previously read
element in the next loop iteration. To also avoid a data dependency if the user
function latency is larger than one, the shift register is accessed using an offset
OFFSET that should be equal to or larger than the latency. This means that
there will be OFFSET loop iterations between an element being read from main
memory and that element being accessed from the shift register. This relaxes
both the memory dependency and potential data dependency, assuming the
offset is large enough, and allows the outer loop to attain an II of 1.
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The results stored in the shift register are not complete when initially
written, since the offset also needs to be taken into account. To compensate
for this, a scan is performed on the first OFFSET elements in the shift register
before writing the result to the output. This starts after the shift register has
shifted the first input enough times, which depends on the size of the shift
register, offset and if the scan is inclusive, according to delay = size−offset+
inclusive. The outer loop will need extra iterations to write all elements to the
output, but assuming the input size is large, it will not affect the performance.

As found by Lambert et al. [15], to allow the outer loop to be unrolled
while not increasing the II, the shift register size should be newsize = size ∗
unrollfactor. This does lead to a high area usage since the user function will
be unrolled both by the outer loop and the final scan loop. As a result, the
size of the unroll factor is limited compared to the other skeletons when using
floating-point types, since these multiple unrolls of the user function quickly
consume all hard-blocks used for floating-point arithmetic.

MapOverlap MapOverlap was the most complicated skeleton implemented
on the FPGA backend. Therefore only the one-dimensional version was im-
plemented for now, supporting the Vector variant and both the row- and
column-wise Matrix variants. All edge handling modes are supported.

The implementation uses a shift register for all three variants, while loop
unrolling is only applied to the main loop in the Vector variant due to too
high resource usage in the other variants. The edge handling modes are im-
plemented in a single kernel for each variant, which is one of the culprits for
the larger hardware usage, as each unroll needs to include the logic needed to
handle the different modes.

6 Experimental Results and Discussion

The FPGA evaluations were performed on Intel Devcloud6 using a Program-
mable Acceleration Card (PAC) with an Arria 10 GX FPGA, with 1150000
logical elements and 1518 DSP blocks, connected via PCIe. Version 19.4.0
of the Intel FPGA OpenCL SDK was used to compile the FPGA kernels.
The GPU benchmarks were run on a NVIDIA Tesla V100 SXM2 32GB GPU
connected via PCIe. Both devices have a similar release date and price point
and were therefore deemed to be a fair comparison.

6.1 Single skeleton performance

The FPGA backend was first evaluated for single skeleton calls. A program was
created for each skeleton type supported by the FPGA backend, with a sim-
ple, typical user function for that skeleton type. Each program was compiled
and run with 3 different unroll factors: 1, 8, and 16, and all used the float

6 https://intel.com/content/www/us/en/developer/tools/devcloud/overview.html

https://intel.com/content/www/us/en/developer/tools/devcloud/overview.html
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Table 1 Single-skeleton test programs with user functions used in the evaluation.

Test Program Skeleton User Function

Adding squares Map f(a, b) = a2 + b2

Global sum Reduce f(a, b) = a+ b
Dot product MapReduce fM (a, b) = a ∗ b, fR(a, b) = a+ b
Prefix sum Scan f(a, b) = a+ b
Overlap average (1D stencil) MapOverlap f(region) = average(region)

data type. The execution time of each variation was recorded with different
input sizes from 106 to 107 elements, in increments of 250000, and with 10
runs for each input size. Memory transfer time in each direction was included
in the execution time. Each skeleton was invoked once before the measuring
invocations to remove the time to program the FPGA. Table 1 lists the skele-
tons and user functions that were evaluated. The skeletons were also evaluated
with the OpenCL backend on both an FPGA and on a GPU. All benchmarks
used a one-dimensional Vector as input container. The FPGA kernels were
compiled using the -fast-compile flag, which significantly speeds up the
compilation speed by reducing the compiler’s optimization efforts.

Figure 3 shows the performance of the single skeleton calls. The No Unroll
line was the FPGA backend run with the unroll factor set to 1 for each skeleton,
effectively disabling the unrolling, while Unroll 8 and Unroll 16 set the unroll
factor to 8 and 16. The Baseline and GPU lines show the execution time
of using kernels generated by the OpenCL backend where Baseline is the
execution time on the FPGA and GPU is the execution time on the GPU.
Scan is missing Unroll 16 because the design generated by this unroll factor
did not fit on the FPGA. It ran out of DSP blocks, which are used for float
operations. For MapOverlap, a baseline is missing due to a bug in the SDK’s
library, preventing the benchmark from running. Finally, we omitted No Unroll
for MapOverlap due to taking too long time: 420ms for the smallest size and
4.2s for the largest. These results show that the kernels generated by the FPGA
backend are faster than the ones generated by the OpenCL backend when run
on the FPGA, even with no unrolling. With unrolling, they are close to the
GPU execution time and faster in the Reduce kernel case.

Figure 3 shows that the new kernel generation with FPGA-specific opti-
mizations in the FPGA backend gives a noticeable performance gain over the
OpenCL backend. The largest performance gain is observed for Scan, where
the baseline implementation performed poorly. One cause of the poor perfor-
mance could be the many barriers used in the baseline kernels, which force the
pipeline to be flushed before moving to the next section. Map is the skeleton
with the least performance gain. This is likely because the FPGA Map kernel
does not use any FPGA-specific techniques besides loop unrolling, meaning
both implementations are similar and are largely memory-bound. The Map
kernel would likely gain from being implemented as an NDRange kernel in-
stead, as the hardware scheduler can help alleviate memory bottlenecks.
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Fig. 3 The median execution times for the single skeleton evaluation (lower is better).

The experiments also show that increasing the unroll factor does not im-
prove performance past a certain point, as almost all benchmarks have similar
execution times. The one outlier is the MapOverlap kernel, where the execu-
tion time for the largest input size using unroll factor 16 is 6 times faster than
that with an unroll factor of 8.

Finally, we see that the fastest FPGA execution time for all but MapOver-
lap is close to the GPU execution time. These results are promising, given the
maturity of the skeleton implementations used by the OpenCL backend.

6.2 FPGA-specific optimizations performance

The effect of the two major FPGA-specific optimizations used in the skeleton
implementations, loop unrolling, and shift registers, were evaluated by execut-
ing the same skeleton kernel compiled with different parameters. The Reduce
skeleton was used with the same user function as in the single skeleton evalu-
ation. Four combinations of parameters (No unrolling / Unroll by 8, and No
shift register / Shift register of size 8) were used to compile four variants of the
skeleton kernel. The variant with both unrolling and shift register was evalu-
ated once with the memory alignment and dynamic DMA transfers turned off
to evaluate its impact. The total execution time was evaluated for each vari-
ant with an input size of 107. Each variant was run 10 times, and the median
execution time was recorded. Figure 4 shows the impact of FPGA-specific op-
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Fig. 4 Result of FPGA-specific techniques (ULN means an unroll factor of N ).

timizations. ULN means the kernel was compiled with an unroll factor of N
and SR means it used a shift register. It shows that both loop unrolling and
using a shift register gives performance benefits. The shift-register had a larger
impact when not using unrolling, giving an 87% speedup, but when combined
with unrolling the performance boost is only 17% compared to just using loop
unrolling. Lastly, turning off the dynamic memory-transfer alignment logic had
a small impact on the execution time.

The evaluation of the FPGA-specific optimizations makes it clear that they
are worth implementing as they give a large speedup without the user needing
to do anything. The compiler reports for the four variants show that II is 3,
and the maximum frequency is 98 MHz without the shift register compared to
1 and 240 MHz with the shift register. This is the case both with and without
loop unrolling. According to Equations 1 and 2, decreasing the II from 3 to 1
and more than doubling the maximum frequency should give close to six times
better performance. Nevertheless, we see that this does not hold in practice,
as the evaluated speedup is close to half the theoretical speedup. Similarly,
an unrolling factor of 8 gives a theoretical speedup of almost eight, but the
evaluated speedup is far from that. Even so, the equations are still useful in
guiding what parameters to change to get performance benefits.

Furthermore, the finding that turning off the memory alignment and trans-
fer logic did not impact performance was surprising, given that Lee et al. [16]
reported over 100 times faster transfer times when using this method. Profiling
the kernel to get the exact memory transfer times shows that the two variants
only differ by a few nanoseconds. This can mean 3 different things: DMA is
not used in either variant, DMA is used in both variants, or DMA does not
affect the memory transfer time.

6.3 Multiple skeletons performance

To evaluate the performance of calling multiple different skeleton instances in a
single SkePU program two programs were created: One chaining two Map calls,
and one calling a single Map instance explicitly fusing the two user functions, as
shown in Listing 6. The total execution time of the program was recorded for an
input size of 106 elements. Moreover, the time to reprogram the FPGA for each
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1 float add(float a, float b) { return a + b; }
2 float multiply(float a, float s) { return a * s; }
3 float combined(float a, float b, float s) { return (a + b) * s; }

Listing 6: The user functions used for evaluating multiple skeleton calls.

Table 2 Running times of the two variants evaluated.

Variant Total Time (s) FPGA Programming Time (s) Execution Time (s)

Chained 7.253 7.241 0.012
Merged 0.018 0 0.018

skeleton call was measured using Intercept Layer for OpenCL Applications7, a
tool for profiling OpenCL applications. Both benchmarks were run 10 times to
reduce the effect of timing variations, with the median execution time and time
spent reprogramming the FPGA being recorded. The results are presented in
Table 2. Total time is the median total amount of time spent to run the
benchmark, Programming time is the time spent on programming the FPGA
before each kernel invocation, and Execution time is the time spent to run the
computations, including memory allocation and transfers.

The difference in total time between the variants is stark: Chained spends
99% of the total time just programming the FPGA. The reason why the Merged
variant does not need to reprogram the FPGA during the benchmark is that
this is done when instantiating the merged skeleton, which is not part of the
benchmark. This is of course also the case for other variants, but since two
skeletons are instantiated, they “overwrite” each other, forcing the FPGA to
be reprogrammed for the first skeleton call in the benchmark every time.

The results of running multiple skeletons show the large overhead re-
programming the FPGA between each skeleton invocation adds. Hence, any
SkePU program that calls multiple skeleton instances will suffer large perfor-
mance penalties when running on the FPGA backend, which is needed for
many computations. Therefore, as many skeletons as possible should be fused
when targeting the FPGA backend. In the current version of SkePU, there is
no automatic fusion of skeletons, even for cases such as a chained Map and
Reduce [8], so manual fusion by the user must be applied.

Still, even if all skeleton instances are fused, the FPGA must be pro-
grammed at least once. Until this operation is optimized, all SkePU programs
that target the FPGA backend will take significantly longer every time it needs
to program the FPGA. The FPGA will cache the kernel between program ex-
ecutions, so if the same program with a single kernel is run multiple times,
only the first execution will require the FPGA to be programmed.

7 https://github.com/intel/opencl-intercept-layer

https://github.com/intel/opencl-intercept-layer
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1 T mmmult(const skepu::MatRow<int> ar, const skepu::MatCol<int> bc)
2 {
3 T res = 0;
4 for (size_t k = 0; k < ar.cols; ++k)
5 res += ar(k) * bc(k);
6 return res;
7 }

Listing 7: Matrix multiplication user function in SkePU.

0 10 20 30 40 50 60

Unroll 1

Unroll 8

Handwritten

52

63

5 · 10−2

Run time [s]

Fig. 5 Result of the complex user function evaluation.

6.4 Complex user function performance

To test more complex user functions, such as functions with loops, we used
the matrix multiplication code from SkePUs set of example programs. It uses
the Map skeleton with the user function shown in Listing 7. Two versions were
evaluated: One with an unroll factor of 1 and one with an unroll factor of 8.

For a comparison with the performance achievable on an FPGA, a hand-
written Matrix Multiplication OpenCL kernel from Boyi’s [14] collection of
OpenCL FPGA kernels8 was also benchmarked. The version used was the
NDRange kernel with 64 as an unroll factor, a SIMD factor of 8 and 2 kernel
replications (ul64_simd8_cu2). All kernels were compiled with the same
flags9 and executed with 2048×2048 matrices. Like the previous evaluations,
all kernels were run 10 times, and the median execution time was recorded.

The results in Figure 5 clearly show that both SkePU variants run on the
FPGA (Unroll 1 and Unroll 8 ) are much slower than the handwritten variant.
Furthermore, the SkePU variant with a higher unroll factor is slower than with
the lower one, in contrast to our results in Section 6.1. The reason appears to
be a failure to pipeline the Unroll 8 variant’s main loop because of the inner
loop in the user function. Without the unroll, this failure does not occur.

While the results in Figure 5 are not surprising, as kernels specifically
created for a task should always be faster than a SkePU implementation, the
difference in performance is still an issue if the FPGA backend is to be used
for any computation with complex user functions. The main issue is loops in
the user function, as these often require a lot of modifications not to cause

8 https://github.com/jjiantong/Boyi/tree/fpga20
9 The handwritten kernel used an extra compilation flag (-no-interleaving=default)

to store the two matrix buffers in different areas of the FPGA’s memory. The FPGA backend
does not use this optimization technique, so the flag was not used for those kernels.

https://github.com/jjiantong/Boyi/tree/fpga20
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the outer loop’s II to increase. According to Intel’s documentation [13] such
nested loops should preferably be fully unrolled or collapsed, but that requires
that the user function is modified by SkePU, which is currently not possible.

7 Conclusion and Future Work

We presented a new backend targeting reconfigurable architectures, specifically
FPGAs, for the skeleton programming framework SkePU. The new backend
implements many features also supported in other backends in SkePU and
implements FPGA-specific optimizations for better performance. We evalu-
ated the new FPGA backend and compared it to one of the GPU backends.
Our results show that performance is close for simpler tasks and highlight the
importance of using FPGA-specific optimizations. However, the backend falls
behind for more complicated tasks.

While the speedup by the FPGA-specific optimizations varied depending
on the task, all skeletons saw performance benefits. Changing the kernels to be
single work items with shift registers gave a speedup compared to running the
OpenCL code by the existing OpenCL backend, from 1.06× for Map to 6.10×
for Scan. Adding more optimizations improved speedup in all cases, ranging
from 1.25× for Map to 9.23× for Scan.

Further details about the implementation and results can be found in the
first author’s recent master thesis [3]. A fork of SkePU with the FPGA backend
implementation is available at https://github.com/Birath/skepu/.

A main issue for future work is the performance when invoking multiple
skeleton instances. The backend should not need to reprogram the FPGA every
time another skeleton is invoked. A potential solution to this is to generate a
single large kernel that only needs to be programmed once. Though this could
lead to issues with resource usage on the FPGA if large loop unrolling factors
are used or the user functions are non-trivial.
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Abstract Machine learning is rapidly becoming a common class of appli-
cation workload for high-performance computer systems. In particular, deep
neural networks (DNNs) is a popular approach for machine learning that comes
with large computational demands and relies on systems with high computa-
tional throughput. Such neural networks are therefore usually implemented in
domain-specific programming models and frameworks, where individual com-
ponents have been hand-tuned for one or several target hardware architectures.
In this work, we investigate to which extent the algorithmic skeleton model as
implemented in the SkePU framework can accommodate deep neural networks,
in particular, convolutional neural networks (CNNs). We extend SkePU with
new functionality aimed at improving the interface for computational- and
data-access patterns seen in CNNs, and demonstrate the design and imple-
mentation with concrete practical scenarios.

Keywords algorithmic skeletons · deep learning · convolutional neural
networks · heterogeneous computing · high-level parallel programming

1 Introduction

Machine learning has developed at a remarkable pace and is attracting a large
number of researchers and practitioners. It has become one of the most pop-
ular research directions and has many applications such as text mining, spam
detection, image classification, and video recommendation. Deep learning, i.e.,
machine learning using deep neural networks (DNN), has achieved good per-
formance in a variety of application domains, such as audio and speech recog-
nition, natural language processing, and visual data processing. The high com-
putational requirements of DNN call for the use of GPUs and other hardware
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accelerators. Hence, the resulting code needs to be able to run on heteroge-
neous systems.

Except for specific DNN benchmarks, DNN computations are usually em-
bedded in an application context that also requires substantial pre- and/or
postprocessing of input and output data. In addition, DNN computations are
increasingly being integrated as subcomputations into more complex applica-
tions in various domains, thus leading to mixed (DNN+X) applications.

While there exist well-known high-level domain-specific languages and frame-
works for deep learning, such as TensorFlow, Keras and PyTorch, these frame-
works lack expressivity and code generation support for other (non-DNN) do-
mains. However, interoperability across multiple DSL frameworks is difficult
because the generated procedural (and possibly, parallel) code from a declara-
tive DNN specification is not exposed to the end programmer. Hence, program
analysis and optimizations across framework boundaries are difficult.

In this work, we propose and prototype a procedural, high-level, multi-
domain programming framework based on algorithmic skeletons [5,4] that
seamlessly integrates both DNN-specific and traditional (non-DNN) computa-
tion patterns, combining the conciseness and high abstraction level of declara-
tive DNN specifications with the tighter execution flow and resource control in
procedural code, providing seamless interoperability with procedural skeleton-
based computations in general-purpose and other domains.

This paper makes the following contributions:

– We study the fundamental computational patterns in convolutional neural
networks and analyze the requirements of conveniently expressing mixed
applications containing both CNN, image processing and linear algebra
subcomputations, using patterns in a C++ based high-level programming
framework for heterogeneous parallel systems.

– Based on this analysis, we extend the SkePU high-level programming frame-
work with several new language features that are particularly suitable for
programming deep learning applications with convolutional neural net-
works, including strided access for all map-based SkePU skeletons (in par-
ticular, the stencil skeleton MapOverlap), a new skeleton for the MapPool
pattern, and a new generic proxy data-container Pool<T> for expressing
CNN-typical data access patterns, which was not possible before in SkePU.

– We also introduce a higher-level interface to DNN patterns in SkePU, sim-
ilar to that of domain-specific languages. For this purpose, we introduce
method chaining to allow for more concise code for operation sequences in
SkePU, thereby enabling a programming style that today’s data scientists
are more familiar with.

The remainder of this paper is organized as follows: Section 2 introduces
background about SkePU and DNN computations. Section 3 presents the de-
sign and implementation of the SkePU-DNN extensions. Early results are re-
ported in Section 4. Section 5 discusses related work. Section 6 concludes and
proposes future work.
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2 Background

2.1 Algorithmic Skeletons

Algorithmic skeletons is a programming model introduced by Cole [5] that
builds upon concepts from functional programming and forms a high-level
interface to parallel programming. The model is centered around parallel pat-
terns such as map, reduce, and prefix-sums which can be efficiently paral-
lelized as their internal dependency structure is well-studied. The idea has
subsequently been implemented in many academic high-level parallel program-
ming frameworks [2,12,11,25,10,29,14], and similar abstractions also show up
in programming languages and standard libraries and in industry tools and
frameworks, such as Intel TBB, Nvidia Thrust [3], Google MapReduce [9],
Apache Spark [33], SYCL, and Intel OneAPI.

Some skeleton programming APIs are focused on data parallelism, others
on task- or stream-parallel patterns. They also differ in their intended target
platforms. In particular, skeleton programming frameworks often target het-
erogeneous platforms such as systems equipped with several CPU cores and
one or more GPU accelerators.

2.2 SkePU

SkePU [14] is an open-source1 framework for C++-based, single-source high-
level programming of heterogeneous parallel systems using algorithmic skele-
tons. SkePU was first introduced in 2010 [11] and went through several major
redesign efforts, the most recent version being SkePU 3 [14].

Since version 2, the SkePU programming interface is an embedded language
extension of C++11+. Each SkePU program is thus a valid C++11+ program
which, if compiled with an ordinary C++ compiler, yields sequential code
with the same semantics. If instead compiled with the SkePU precompiler,
the SkePU-specific program constructs (skeleton objects, user functions etc.)
are translated in a specific way and platform-specific source code variants for
use with the parallel SkePU back-ends (e.g., OpenMP for multicore CPUs,
OpenCL and CUDA for GPUs) is generated, which is further compiled with
a platform-specific compiler such as nvcc for CUDA code.

SkePU focuses on skeletons that implement data-parallel computation pat-
terns which operate on in-memory multi-dimensional arrays of one to four
dimensions, represented as generic data-container objects with a STL-like in-
terface: Vector, Matrix, Tensor3D and Tensor4D.

The current SkePU version provides a set of different skeletons: Map (ele-
mentwise application of an operator to each element in one or multiple input
containers in 1D to 4D), MapOverlap (generic stencil computations in 1D to
4D), MapPairs (generic outer product of vectors), Reduce (reductions in 1D
to 4D), MapReduce (fused combination of Map and Reduce), MapPairsReduce,

1 https://skepu.github.io

https://skepu.github.io
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and Scan (generic prefix sums computations). The skeletons can be configured
in various ways, for example MapOverlap in the stencil overlap size (i.e., filter
width) in each dimension and in the boundary handling.

A skeleton only models the generic internal data dependence and access
structure of the computation pattern that it implements. The missing problem-
specific operators are specified by the programmer as so-called user functions.
These are side-effect-free ordinary C/C++ functions, with which a skeleton
can be customized and instantiated, thereby creating a skeleton instance object
which then can be called like any hand-written C++ function.

SkePU skeletons are polymorphic in both number and shape of their operands,
depending basically only on the signature of the user function that a skeleton
is instantiated with. Hence, an instance of a skeleton (e.g., Map) can accept any
number and dimensionality of element-wise accessed container operands of any
dimensionality, any number of multi-element accessible container operands of
any dimensionality, plus any number of uniform arguments (e.g., constant val-
ues), in this order. With element-wise access to input data-containers being
the default access pattern, multi-element data access patterns are specified
by using proxy container objects in user function parameters, such as Mat for
random access to any element or MatRow for access within a matrix row, or
RegionXD for access within a limited-distance X-dimensional neighborhood
in a X-dimensional data-container, where the latter is used for stencil compu-
tations in X = 1, ..., 4 dimensions. For more details, we refer to [14].

With the different backends provided for each SkePU skeleton, a skeleton
instance can execute either in sequential or parallel on CPU or on one or
several GPUs using OpenCL or CUDA; also a hybrid CPU-GPU backend
exists. The backend selection for a skeleton instance’s execution can be either
explicitly specified by the programmer (also at runtime) or done automatically
by SkePU. The latter uses either the default setting (namely, the most parallel
backend available for the target system) or the SkePU autotuner which builds
an internal performance model for backend selection from previous training
executions of the skeleton instance. SkePU programs can also transparently
execute on multiple cluster nodes without any changes in the source code [14].

SkePU data containers transparently manage memory and communication
of elements at runtime, depending on where computations on them are exe-
cuted. They apply a number of optimizations, such as lazy transfers [7] and
lazy evaluation with global tiling [15].

Recent work on SkePU has added integrated, portable pseudo-random
number generation [16] that internally leverages available parallelism but be-
haves deterministically across the different backends, regardless of the number
of processors or the type or number of accelerators used.

Listing 1 shows a basic example SkePU program: a two-dimensional cellular
automation. The MapOverlap skeleton is used to perform the simulation, along
with matrix smart data-containers to model the world. A set of evolution rules
is also stored in a matrix, which is passed to the user function in its entirety
and used as a look-up table.
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Listing 1: SkePU example program: a 2D cellular automaton.
1 char automaton_update(skepu::Region2D<char> r, skepu::Mat<char> rules)

{
float count = 0;
for (int i = -r.oi; i <= r.oi; ++i)

5 for (int j = -r.oj; j <= r.oj; ++j)
if (!(i == 0 && j == 0)) count += r(i, j) ? 1 : 0;

return rules(r(0, 0), count) ? 1 : 0;
}
auto update = skepu::MapOverlap(automaton_update);

10 update.setOverlap(1, 1); // set overlap radii
update.setEdgeMode(skepu::Edge::Pad);
update.setPad(0); // set padding value
skepu::Matrix<char> domainA(size, size, 0), domainB(size, size);
skepu::Matrix<char> updateRules(2, 8);

15 // Each empty cell with three neighbors becomes populated.
// Each populated cell with two or three neighbors survives.
updateRules(0, 3) = true;
updateRules(1, 2) = true;
updateRules(1, 3) = true;

20
domainA.randomize(0, 2);
for (size_t i = 0; i < iters; ++i)
{

update(domainB, domainA, updateRules); // read from A and write to B
25 update(domainA, domainB, updateRules); // read from B and write to A

}

2.3 Deep Learning and Convolutional Neural Networks

Machine learning incorporates various kinds of learning, while supervised and
unsupervised learning are probably the most widely known types of learning.
Supervised learning techniques learn from data sets that contain features and
labels or targets (y). Among various supervised learning methods, deep learn-
ing approaches have gained a lot of interest in recent decades. Various kinds
of neural architectures have been proposed, including Recurrent Neural Net-
works (RNN), Convolutional Neural Networks (CNN), and Long Short Term
Memory neworks (LSTM) [22]. In unsupervised learning, the data set is unla-
beled, and the model learns the features to recognize unidentified structures
or relationships, for example clusters.

A starting point of our work is CNN architectures as shown in Figure 1.
This architecture is commonly applied in deep learning for computer vision
applications. The advantage of CNN architectures is that they automatically
extract the features that are important for the prediction task and thus can
replace the resource consuming manual feature engineering. The first CNN
architecture proposed by LeCun [23] in 1998 motivated more advanced archi-
tectures such as AlexNet [21] which marked a turning point in the field of
computer vision.
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Fig. 1: Example of a basic CNN architecture (from the Keras examples https:
//keras.io/examples/vision/mnist_convnet/). It takes a 28×28 image as
input, which is processed by convolutional layers (C1, C2) with activation
function ReLU, pooling layers (P1, P2), and a flattening, a dropout, and a
fully connected layer, with 10 outputs. The hyperparameters of the convolution
and pooling layers are S (stride), N (filter size), K (number of kernels), and
P (padding). Param gives the total number of weight and bias parameter
elements for each layer. The fully connected layer at the end contains only 10
neurons with softmax activation functions, which also act as an output layer.

2.3.1 Forward propagation: Predictions

To learn the parameters of neural networks, optimization algorithms are em-
ployed. These algorithms typically require an estimate of the gradient of the
cost function of the network with respect to the model parameters, at each
optimization iteration. To estimate this gradient, back-propagation [30] is typ-
ically used in deep learning. Back-propagation is illustrated in Figure 2: (1)
forward pass and (2) backward pass, also known as backpropagation.

During the forward pass, the network parameters, such as the weights and
biases are fixed and used to process the input. A forward pass is used to
calculate a predicted output during training for each vector xi, i = 1, . . . ,m
having a known output yi. In Figure 2, q(0) = x is the input, which is processed
by layers (1, . . . , λ). Each layer has parameters such as weights and bias where
W (1) and b(1) belong to layer 1, W (2) and b(2) belong to layer 2, and so on,
where the dot product is stored in z1, z2, . . . , zλ. The result of each layer is
represented as q(1), q(2), . . . , qλ−1, so, q(1) is the output of layer 1, and input
for layer 2 until last layer (λ).

2.3.2 Backpropagation Algorithm

Backpropagation is the process of computing the gradients of the cost func-
tion with respect to the network parameters (input, weights, and biases)
θ = {W 1, b1, q1,W 2, q2, ...}. To compute the optimal values of parameters

https://keras.io/examples/vision/mnist_convnet/
https://keras.io/examples/vision/mnist_convnet/
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Fig. 2: A computational graph of the forward and backward propagation al-
gorithm for training a multi-layer feed-forward network (adapted from [24]).
The model input (upper left corner) is propagated forward from layer (1 to λ)
to calculate the outputs q and z of each layer. After evaluating the cost func-
tion, the learning algorithm calculates the gradient of each layer w.r.t input
dq, weights dW and bias db, and propagates backward in the network.

θ = argmin J(θ) where J(θ) = 1
n

∑n
i=1 L(xi, yi, θ). Here J(θ) is a cost func-

tion and L(xi, yi, θ) is a loss function. The backpropagation algorithm works
by propagating the evaluated gradients back through the layers of the network,
using the chain rule of calculus to calculate the gradients of the loss function
with respect to the inputs (dq), weights (dW ), and biases (db) of each layer.
These gradients can be used to update the parameters through an optimization
algorithm such as stochastic gradient descent (SGD). In Figure 2, a gradient
is computed for each layer (1, . . . , λ) w.r.t input (dq), weights (dW ), and bias
(db). Where dW (1) is the weight gradient of layer 1, dW (2) of layer 2, and so
on. The bias gradient of each layer is presented as db(1), db(2), . . . , db(λ). And
the input gradient of each layer is computed as dq(1), dq(2), . . . , dq(λ).

2.4 CNN Layer Types

A basic convolutional neural network architecture is commonly described as a
sequence of layers. A layer typically models either a computation with train-
able weights/parameters (such as a fully-connected or convolutional layer) or
a transformation of the structure of the layer input (such as flatten or dropout
layers).

A simple CNN architecture has been implemented https://keras.io/
examples/vision/mnist_convnet/) for the classification of handwritten dig-
its. This architecture has three types of layers: (1) convolutional layer, (2)
subsampling (pooling) layer, (3) the dropout layer and (4) fully connected

https://keras.io/examples/vision/mnist_convnet/
https://keras.io/examples/vision/mnist_convnet/
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Listing 2: Example in Keras
1 model = keras.Sequential([

keras.Input(shape=(28, 28, 1)),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),

5 layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(10, activation="softmax")

10 ])

layer, see Figure 1. The input (X) to the CNN model at each layer is orga-
nized into three dimensions, namely height (m), width (m), and depth (d),
where height and width are equal in size, and depth is the number of chan-
nels in the input image (RGB or grayscale input). There are several kernels
(filters) in the convolutional layer that convolve on the image. The dimen-
sions for each kernel are also the same as the input height (n), width (n), and
depth (q), where n < m and q = d. Each kernel k has parameters such as
weights (W k) and bias (bk) that make a connection with input while doing the
convolutional operation (see Sect. 2.4.1), to generate feature maps. A feature
map is an output of each layer. The kernel weights are randomly initialized at
the beginning of the model training process and updated during the training
process.

2.4.1 Convolutional Layer

The purpose of a convolutional layer is to learn high-level features of the input
image by employing the spatial information in the neighborhood of each pixel.
The convolutional layer (CL) is the first layer of the CNN model. It first
computes

z = conv(X,W ) + b, (1)
where conv(X,W ) is a convolution operator between the input X and the
weights W (the kernel), i.e.

conv(X,W )ij =
n∑

µ=1

n∑
ν=1

Wµ,νXi+µ,j+ν , for all i, j = 1, ...,m− n, (2)

and then applies a non-linear function (called activation function) to z values
to generate the feature map. A feature map is an output of a convolutional
layer, where each element of the feature map corresponds to a specific loca-
tion in the input image. By stacking multiple feature maps together, a CNN
model can learn to recognize more complex features. There are many possible
activation functions that can be used (see Sect. 2.5).

There are several hyperparameters in CL, such as the number of kernels,
size of the kernel filter, strides, padding, in addition to the input. The strides
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using stride and padding. PL kernels compute a block-wise partial reduction
to reduce the size of the feature map, see Figure 3. The primary purpose of
this layer is to aggregate inputs into a more compact representation which may
speed up the training process and reduce the noise and redundancies in the
input. A sliding kernel is applied to an adjacent region of size a×a in the feature
map, where a is the size of the pool, and a pooling function is applied to the
elements of that region. Commonly used pooling functions are the maximum,
minimum, average maximum, and global average maximum, but maximum
and average pooling are probably the most popular in the literature.

We have used max-pooling in our implementation. During a forward pass,
the pooling layer calculates the maximum element and its index in the region,
and this information is used for the gradient calculation. The pooling layer
has no parameters that would require learning.

During backpropagation of the pooling layer, the gradient is only computed
for the recorded index of the maximum element. The maximum element is
obtained after applying the pooling a × a is 1. So, in backpropagation, we
only need to compute input (X) values that come from the next layer, thus
calculate ∂L

∂X . Taking the partial derivative on a × a we only have 1 value
because the other elements did not participate.

2.4.3 Dense (fully connected) Layers

The last layer of the CNN model is a fully connected layer, also known as the
classifier of the model. A dense layer consists of a set of neurons each being
connected to every neuron of the previous layer, parameterized by weights and
biases. A dense layer computes a dot product between the input and weights,
with the bias as an offset:

z =

m∑
i=1

XiWi + b (6)

which is then processed by the activation function g: g′ = g(z).
During the backpropagation, the gradients are calculated w.r.t. the weights

W , bias b, and input X:

∂L
∂W

= XT ∗ ∂g

∂z

∂L
∂b

=
m∑
i=1

∂gi
∂zi

∂L
∂X

=
∂g

∂z
∗WT (7)

2.4.4 Flattening Layers

The last feature map from the convolution and pooling layers is converted to
a flat one-column vector. This layer simply reshapes the matrix input into a
vector, in order to be compatible to the next layer input (feed-forward layer).

During the backpropagation, the flattening layer takes the input from the
following layer and passes it to the previous layer by re-indexing.
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2.4.5 Dropout Layers

Dropout is a regularization technique described in [31]. During training, the
weights associated with certain nodes are temporarily forced to zero. The
neurons in a dropout layer are selected at random with a fixed probability p,
and the associated weights are set to zero. p is a hyperparameter set at model
architecture design time. In high-level APIs such as Keras2 and PyTorch3,
dropout is modeled by a separate layer, although this type of layer does not
contain trainable parameters. The purpose of random dropout is to prevent
overfitting of the trained model by preventing co-adaption of neurons [20].
Random dropout during the training phase forces the model to train individual
neurons to a greater degree.

2.5 Activation Function

An activation function in the network performs a (typically non-linear) trans-
formation of the output of a neuron. There are many activation functions such
as sigmoid, tanh, ReLU, Leaky ReLU, PReLU, and softmax . Some activations
such as Tanh, ReLU, Leaky ReLU, and PReLU are typically used in hidden
layers. Activations in the output layer depend on the problem: for example,
for classification problems, softmax activation is used. In our paper, we use
ReLU in hidden layers and softmax in the output layer.

ReLU (Rectified Linear Unit) deactivates a neuron if the output of its
linear transformation is less than 0. Mathematically it can be represented as:
f(x) = max(0, x). During the backpropagation, the derivative with respect to
x in the case x < 0 is f ′(x) = 0; for the case x > 0, f ′(x) = 1.

Softmax is used for classification; it transforms the inputs zi into numbers
between zero and one that are interpreted as probabilities of the respective
classes: softmax(zi) = exp(zi) /

∑
j exp(zj).

2.6 Optimizers

Various optimizers have been proposed to estimate the optimal parameter val-
ues of the loss function [17]. Most of these approaches are based on a gradient
descent approach that reaches the optimal values of the parameters sequen-
tially by moving from one set of parameters to the next set in the direction
of the negative gradient. In our paper, we focused on stochastic gradient de-
scent (SGD) approach which benefits from the knowledge that the gradient of
the loss function is a sum over individual data observations. This sum can be
approximated by summing over a subsample of all observations and scaling
the result up appropriately. The SGD algorithm splits the entire dataset into
small subsamples (mini-batches) and then each minibatch is used sequentially

2 https://keras.io
3 https://pytorch.org/

https://keras.io
https://pytorch.org/
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in the optimization iterations to estimate the gradient via back-propagation.
Although SGD was chosen for parameter optimization in our work, similar pro-
gramming constructions can be used to implement other known optimization
algorithms for deep learning.

3 Design and Implementation

This section explores how components and certain functionality of CNN archi-
tectures can be expressed in a high-level data-parallel pattern-based program-
ming model. We use SkePU in this work, but the insights can be applied to
other similar programming frameworks as well. In the design and implementa-
tion work we use many features already existing in SkePU; some that have been
recently introduced, such as the 4D tensor data-structures and corresponding
data-parallel patterns [14], are fundamentally required for CNN workloads.
In the interest of presenting new contributions, however, this section focuses
in particular on the ways SkePU has been extended with new functionality
specifically for this work. This includes strided skeletons in Section 3.1 and
the MapPool skeleton in Section 3.2. We also introduce a domain-specific API
extension to SkePU for (mixed-)DNN applications in Section 3.4.

3.1 Strided Skeletons

SkePU is flexible in how it can accommodate multiple input and output
operands (”variadic arity”). However, up until now, invocations of a skele-
ton pattern on a data set has largely followed a simple rule-of-thumb: the user
function is invoked once per element in the output container(s). The output
operands are enforced to all have the same size, as are the element-wise in-
put operands. Some exceptions have existed before, for example, the user can
supply iterators instead of entire smart data containers, in effect applying a
skeleton pattern only to a certain window in a data container.

Now, SkePU is extended with an API and implementation for specifying
strides in skeleton invocations. A stride is the step length between subsequent
user function invocations for indexing into smart data container structures.

An example is shown in Listing 3, and visualized in Figure 4, illustrating
how strides are mapped to skeleton container arguments. Strides are variadic
in the same way skeletons have variable arity: each output and (element-wise)
container is assigned its own stride. For MapOverlap specifically, the strides
work a bit differently. Only the input container can be stride-accessed, but the
strides here apply multi-dimensionally, e.g., each dimension in a tensor can
have a separate stride length.
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Listing 3: Strided skeletons in SkePU.
1 int f(int a, int b) { /* … */ };

auto strideMapper = skepu::Map(f);
skepu::Vector<int> out(16), in_a(1000), in_b(1000);
strideMapper.setStride(2, 4, 3);

5 strideMapper(out, in_a, in_b);

int f(int a, int b) { … };


auto mapper = skepu::Map(f);


mapper.setStride(1, 4, 3); 

mapper(out, in_a, in_b); // out stride = 1, in_a stride = 4, in_b stride = 3
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 f
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 )

out
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in_b

Still the entire contents of out, in_a, in_b are copied to device!
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Fig. 4: Reference illustration of variadicly-strided Map skeleton.

3.2 MapPool Skeleton

Data-parallel map transformations are by default done element-wise, as is the
case for SkePU’s Map. By adding proxy containers to the user function sig-
nature, like Vec (whole-vector random-access4), Mat (whole-matrix random-
access), or MatRow (single-row random access); the user function can be ex-
tended to handle a more diverse set of tasks.

For stencil computations, SkePU applies the same general idea. But since
this special case is so important for a wide variety of application workloads,
for performance-optimization reasons this is integrated in its own separate
skeleton pattern: MapOverlap. The container proxy called Region represents
a center element and the hyper-rectangle that is the neighborhood region of
elements as determined by overlap radii. The term ”overlap” is used as neigh-
boring elements will have their respective regions overlapping each other. Each
dimension can be configured with its own overlap radius. Region can only be
used in user functions instantiating a MapOverlap pattern.

This model of representing regions or neighborhoods in input data is useful
in several application domains, not least image processing and iterative dif-
ferential equation solvers. But it extends poorly to the pooling layers used in
convolutional neural networks:

– Pooling is not applied once per element in the input data; rather, the
input data is split into a number of regions. The shape of processed data

4 Random access here means that no access pattern is enforced, and that the user can
read whichever elements in whatever order they want. It does not mean that the accesses
are randomized.
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Listing 4: Max-pooling computation with MapPool skeleton.
1 float max_pooling_uf(skepu::Pool4D<float> pool)

{
float maxval = 10e-10;
for (size_t j = 0; j < pool.sj; ++j)

5 for (size_t k = 0; k < pool.sk; ++k)
{

float val = pool(0, j, k, 0);
maxval = (maxval > val) ? maxval : val;

}
10 return maxval;

}
auto skel_pool_max = skepu::MapPool(max_pooling_uf);

// input, output are of type skepu::Tensor4<float>
15 skel_pool_max.setPoolSize(1, 2, 2, 1);

skel_pool_max.setStride(1, 2, 2, 1);
skel_pool_max(output, input);

Listing 5: Batched softmax with MapPool skeleton.
1 float softmax_1(skepu::Pool4D<float> pool)

{
float sum = 0;
for (size_t l = 0; l < pool.sl; l++)

5 sum += exp(pool(0, 0, 0, l)); // reduction over last dimension
return sum;

}
float softmax_2(skepu::Index4D idx, float x, skepu::Ten4<float> sums)
{

10 return exp(x) / sums(idx.i, idx.j, idx.k, 0);
}
auto skel_softmax_1 = skepu::MapPool(softmax_1);
auto skel_softmax_2 = skepu::Map(softmax_2);

15 // input, output, temp are of type skepu::Tensor4<float>
skel_softmax_1.setPoolSize(1, 1, 1, input.size_l());
skel_softmax_1.setStride (1, 1, 1, input.size_l());
skel_softmax_1(temp, input);
skel_softmax_2(output, input, temp);

Listing 6: Dropout layer using deterministic parallel PRNG.
1 template<typename T>

T dropout_uf(skepu::Random<1> &rand, T el, float rate)
{

float p = rand.getNormalized();
5 return (p > rate) ? (el * 1.0/(1.0 - rate)) : 0;

}
auto skel_dropout = skepu::Map<1>(dropout_uf<float>);
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Listing 7: Example in SkePU-DNN
1 #include <skepu-lib/ml.hpp>

size_t BATCH_SIZE = 100;
auto input_shape = skepu::ml::Dimensions{BATCH_SIZE, 28, 28, 1};
auto model = skepu::ml::SequentialModel(input_shape);

5 model
<< skepu::ml::Conv2D(32).kernel(3, 3)

.activation(skepu::ml::Activate::ReLU)
<< skepu::ml::MaxPooling2D().kernel(2, 2)
<< skepu::ml::Conv2D(64).kernel(3, 3)

10 .activation(skepu::ml::Activate::ReLU)
<< skepu::ml::MaxPooling2D().kernel(2, 2)
<< skepu::ml::Flatten()
<< skepu::ml::Dropout(0.5)
<< skepu::ml::Dense(10)

15 .activation(skepu::ml::Activate::SoftMax);

3.3 Weight Initialization and Dropout Layer

Deterministic parallel pseudo-random number generators as introduced in
[16] are used in SkePU-based CNN models and ensures that a correct PRNG
stream is used for weight initialization of trainable parameters and also for
implementing the dropout layer, as shown in Listing 6.

3.4 Domain-specific DNN Interface

So far, this section has shown how to implement DNN functionality in SkePU
on a function-by-function basis. SkePU skeletons and smart data-containers
form a programming model that is high-level in the sense of abstraction
from parallelization and platform-specific code. However, machine learning
programmers expect an even higher level of abstraction: domain-specific and
declarative interfaces for describing CNN architectures where the key pro-
gramming constructs are layers and hyperparameters. For this purpose, in
this work we also propose a SkePU API specifically for CNN computations.
This contribution extends the SkePU standard library [13].

The result is that the user can describe DNN models as in Listing 7 and
mix these constructs freely with standard SkePU. Internally, the SkePU-DNN
components use skeletons and smart data-containers in line with the explana-
tions earlier in this section.

The model is built lazily, e.g., the operations in Listing 7 are all constant-
time and require no system resources. Once the model is initialized, explic-
itly or implicitly by using it for prediction or learning, all layers have their
input and output shapes computed and internal smart data-containers are al-
located for parameter storage and intermediate data needed during computa-
tion. Batch processing is supported (and recommended for best parallelization
opportunities). Both forward and backwards-propagation (the latter used for
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Tabell 1

Batch size Batch size Sequential C++ OpenMP-3 OpenMP-6 OpenMP-12 OpenMP-24

32 32

64 64

128 128 0,0323072 0,0553663 0,0293419 0,0148886 0,0157547

256 256 0,0839742 0,129966 0,0633571 0,0350173 0,0296679

512 512 0,186558 0,264199 0,13539 0,0787528 0,0623113

1024 1024 0,349609 0,534626 0,269076 0,162705 0,119732

2048 2048 0,699741 1,03035 0,533288 0,332437 0,243469

4096 4096 1,40221 2,05763 1,11005 0,566115 0,498663

8192 8192 2,77592 4,28875 2,23413 1,08396 0,990269
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Fig. 6: Parallel speedup of batch predictions using the model in Figure 1, using
sequential C++ and OpenMP with varying thread count.

model fitting) is handled by the model abstraction using the internal skele-
ton patterns and data-containers, using a mix of static polymorphism (e.g.,
SkePU precompiler and template meta-programming) and dynamic polymor-
phism (for communication between model layers).

The interface for model fitting is yet to be finalized; we aim for a similar
level of abstraction as Keras here as well. There will also be an option for
initializing model weights from serialized parameter data, with the data ob-
tained either from earlier training in SkePU-DNN or from external tools such
as Keras. This will be part of a future revision of this paper.

4 Evaluation and Discussion

We present preliminary performance evaluation of the parallelization speedup
when computing batch predictions with the model in Figure 1 and Listing 7.
The model is evaluated on the MNIST handwritten digit dataset (28 × 28
images), here using the training set of 60000 images, split into batches of
powers of two from 128 to 8192. The results from the prototype implementation
on a local server with 12 physical cores (24 logical cores) split between two
sockets, using g++-10 with -O3 optimization settings, can be seen in Figure 6.

These early results indicate that there is a parallelization bottleneck when
using the simple Keras model, even with large batch sizes. Using only a few
threads incurs a slowdown compared to sequential execution. Reducing the
ratio of writes in the tensor accesses, e.g. by modifying model hyperparameters
with larger convolution kernels, eliminates this slowdown. But even with the
simple model, speedup is eventually observed when utilizing more cores.

From these results we see that larger and more complex model architectures
may be required for future evaluation. We are also looking into identifying the
source of memory thrashing behavior in the MapOverlap skeleton when applied
to tensors of arbitrary dimensions. We also plan to extend the evaluation to
include model fitting for a future revision of the paper.
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5 Related work

Stencil-pattern computations are at the core of the convolutional layers in
CNN, but are also central in other, more traditional application domains
such as image processing and iterative linear equation system solving. Ac-
cordingly, over the last decades, many domain-specific languages (DSLs) for
stencil computations have been developed in order to support generating ef-
ficient memory-hierarchy aware and parallel code, such as Halide [28] and
HiPAcc [26], as well as stencil patterns in skeleton-programming frameworks,
as in SkePU, SkelCL [32], MueSLi [19], FastFlow [1], LiFT [18] and EPSILOD
[8]. Tuning meta-parameters in SkePU (v1) convolutions for efficient execution
on CUDA GPUs is described by Dastgeer [6].

TinyDNN 5 is a C++14-based header-only library for high-level program-
ming of DNNs, where the specification corresponds to abstract but procedural
code, as also in the work presented in this paper. From a specification (i.e.,
front-end) perspective, we consider TinyDNN closest to our work, with the dif-
ference that SkePU also supports general-purpose patterns outside the DNN
domain. Unfortunately, TinyDNN is no longer maintained.

DSLs for deep learning include the well-known high-level frameworks Ten-
sorFlow, Keras and PyTorch. A common property is that they expect declara-
tive specifications of the DNN model, i.e., accept a graph-like description of the
neural network with its layers, parameters, training method and hyperparam-
eters, from which the framework internally generates procedural (and possibly
accelerator-based) target code for inference and training that is not exposed
to the end programmer. In this respect, SkePU with its new DNN support fea-
tures represents a relatively high-level yet procedural middle-ground between
declarative DSL frameworks and domain-specific libraries. The advantage of
a framework for procedural high-level programming is that it can likewise be
used for seamlessly specifying the data pre-/postprocessing computations or
other non-DNN code parts of a mixed AI+X application. This provides the
option for global optimizations (such as global tiling, kernel fusion, data layout
transformations etc.) across domain boundaries, escaping the expressivity or
interoperability limitations of separate declarative DSL frameworks.

Method chaining, which we introduced in SkePU as part of this work, is
a common programming pattern in Python (and more recently, also C++)
libraries such as Spark [33] or PiCo [27] for big-data analytics and machine
learning, where computations are commonly expressed as sequences of multiple
data-dependent sweeps of operations over an input stream or data-container
that is updated in-place, such that textual order matches operation order.
While being merely syntactic sugar enabling concise code, it could be suitably
combined with (static) identification of operation lineages for cross-operation
data locality optimizations, which would otherwise have to be done at runtime,
as e.g. in Spark or in SkePU since version 2 [15].

5 https://github.com/tiny-dnn/tiny-dnn

https://github.com/tiny-dnn/tiny-dnn
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6 Conclusions and Future Work

We have presented a design and implementation of convolutional neural net-
work operations in the high-level skeleton programming framework SkePU.
Through a study of computational patterns present in CNN models, we have
identified necessary extensions to SkePU, such as a new pooling pattern. Based
on this and earlier work, we provide a domain-specific interface for design-
ing and executing DNN workloads in SkePU—which internally uses skeletons
and smart data-containers—allowing it to seamlessly mix with other SkePU
components. Both the extensions to the core of SkePU as well as the domain-
specific API will be included in a forthcoming open-source version of the frame-
work.

For upcoming revisions of this paper, we plan to perform more extensive
performance evaluation and comparison, in particular on GPUs. We also aim
to use more, and larger, CNN models. In future work, we hope to include more
types of deep neural network layers and features, such as RNNs.
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Abstract Similarity joins are recognized to be among the most used data 
processing and analysis operations. In this work we introduce a C++-based 
high-level parallel pattern implemented on top of FastFlow Building Blocks to 
provide the programmer with ready-to-use similarity joins computations. The 
SimilarityJoin pattern is implemented according to the MapReduce paradigm 
enriched with Locality Sensitive Hashing (LSH) to optimize the whole com-
putation. The new parallel pattern can be used with any C++ serializable 
data structure and executed on shared- and distributed-memory machines. 
We present some experimental validation of the proposed solution on two dif-
ferent clusters using the original hand-tuned Hadoop implementation of the 
LSH-based similarity join algorithms as a reference baseline.
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1 Introduction

The Similarity join is a fundamental operation in data analysis that consists 
in finding p airs o f c lose t uples a ccording t o a  g iven d istance m etric. This 
operation is often used in various applications, including data cleaning [1], 
entity resolution [2], and collaborative filtering [3,4].

Naively, similarity join computations can be performed by comparing all 
the data pairs, thus requiring the computation of the entire Cartesian product. 
This has a fatal effect on performance and l imits the scalability of processing
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large datasets. A cluster of machines and scalable distributed algorithms are
required to perform similarity joins for huge datasets. Consequently, it is chal-
lenging for scientists unfamiliar with parallel and distributed computing to
employ similarity join algorithms in their applications.

Parallelization patterns, such as MapReduce [5], have gained popularity
easing the life of scientists in many application domains, accelerating code pro-
totyping and time-to-solution. This is achieved by hiding all complex low-level
mechanisms and ignoring the tuning of a considerable number of parameters
to reach the maximum performance of the targeted parallel system.

In [6], we proposed MRS-join (MapReduce Similarity Join) a scalable
similarity join computation using MapReduce and Locality Sensitive Hash-
ing (LSH). Besides being easy to use for scientists, the proposed approach
significantly reduces the number of comparisons needed and the communica-
tion costs while guaranteeing perfect computation balancing. The MRS-join
algorithm was implemented in Hadoop. Apache Hadoop, with the Hadoop
Distributed File System (HDFS), is the reference framework of the MapRe-
duce paradigm and the de facto standard in industry and academia due to its
ease of use, horizontal scalability, and failover properties. However, Hadoop
can be overkill for small-medium datasets in terms of performance when the
dataset fits in the aggregated memory of the cluster nodes used or when the
MapReduce computation spans multiple chained jobs, like in the similarity
join algorithm (i.e., histogram calculation and similarity join computation).

In this work, we propose the SimilarityJoin high-level pattern on top of
the FastFlow [7] library, a parallel programming library providing the pro-
grammer with both high-level parallel patterns and a lower-level software
layer of nestable and composable data-flow components called Building Blocks
(BBs) [8]. As a result, FastFlow ’s BBs can be used for implementing effi-
cient and scalable data processing with a single source for high-end multi-core
servers and a cluster of multi-core nodes. The SimilarityJoin pattern interface
is back-end agnostic, offering all the benefits of the FastFlow library yet hiding
all its complex parameters tuning of the FastFlow run-time system. Further-
more, the Input/Output data of the pattern is based on standard POSIX files,
whereas all intermediate results are computed and stored in the main memory.

We validated the SimilarityJoin parallel pattern through a set of experi-
ments based on the trajectories similarity use case, showing its scalability on
a cluster of 16 server nodes varying the datasets size and the number of nodes
employed. Moreover, we made an initial performance comparison with an al-
ready existing hand-tuned implementation of the same use case in Hadoop [6],
which has highlighted the strengths and current limitations of the proposed
SimilarityJoin pattern.

The outline of the paper is as follows. Section 2 presents an overview of
the LSH-based similarity join algorithm and the FastFlow library. Section
3 introduces the SimilarityJoin pattern, and its FastFlow implementation.
Section 4 presents the experimental evaluation conducted. Section 5 provides
a discussion of related works and Section 6 draws the conclusions of this paper.
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Fig. 1 MapReduce similarity join computation steps in Hadoop.

2 Background

This section presents the principle of the similarity join algorithm and the
basics of the FastFlow parallel library.

2.1 Similarity join algorithm

Formally, a similarity join for two collections of data R and S is R ⋊⋉λ S =
{(u, v) ∈ R × S | Dist(u, v) ≤ λ} where Dist(u, v) is a distance between
u and v, and λ is the threshold parameter. The algorithm MRS-join [6] is
based on MapReduce patterns to compute similarity join. To avoid comparing
all data pairs, which requires a Cartesian product computation, the search
space is reduced using a random hashing framework called Locality Sensitive
Hashing (LSH) [9,10]. It is based on a hashing scheme that ensures that nearby
data points are more likely to collide than distant ones. The random hashing
function depends on the type of data and the chosen distance. To produce a
good fraction of all pairs of similar records, several independent iterations are
required. The value obtained for each iteration is used as a join attribute. We
refer the reader to [11] for more details on LSH.

In large skewed datasets, the computation of the similarity join may be
inefficiently distributed, i.e. few computation nodes are used for the distance
computations. To avoid these effects, MRS-join uses distributed histograms
and randomised communication patterns to ensure perfect balancing proper-
ties during all the steps of similarity join computations while reducing com-
munication costs to only relevant data [12,6,13]. The histogram of a join is
defined as the mapping between a join attribute value and its frequencies. Only
join attribute values which might appear in the join result are retained to re-
duce communication costs to relevant data. For large datasets, we expect that
the corresponding histogram does not fit in memory. Therefore, the histogram
is distributed according to the occurrence of join attribute values in different
portion of input data. It is then used to generate communication templates, al-
lowing to transmit only relevant data fairly during the join processing step. We
refer the reader to [12,6,13] for further details about distributed histograms
and randomised communication templates.

MRS-join has been implemented in the Hadoop framework. It proceeds in
two steps as illustrated in Figure 1 where:

➊ The histogram of the join is computed and distributed to reduce compu-
tation to only relevant data while guaranteeing balanced communication
patterns.
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Fig. 2 FastFlow shared-memory Building Blocks (BBs)

➋ Using distributed histograms, efficient and scalable communication tem-
plates are generated to balance the load of distance computations between
pairs identified as similar.

At the beginning of each step, the join attribute values are computed using
LSH for each record in the input. The step ➊ is composed of two MapReduce
jobs, the first one is used to compute the histogram of the join and the second to
distribute it. Using distributed histograms, the step ➋ computes the similarity
join output from an additional MapReduce job.

2.2 The FastFlow parallel library

The C++ header-only FastFlow library [7] is the result of a research effort
started in 2010 intending to provide application designers with essential fea-
tures for parallel programming via suitable abstractions and a carefully de-
signed run-time system (RTS). At the lower software layer of the library, there
are the so-called Building Blocks (BBs), i.e., recurrent data-flow compositions
of concurrent activities working in a streaming fashion, which are used as the
primary components for building FastFlow parallel patterns (e.g., Pipeline,
ordered Task-Farm, Divide&Conquer, Parallel-For-Reduce, Macro Data-Flow)
and, more generally FastFlow streaming topologies [14,15].

Following the principles of the structured parallel programming method-
ology, a parallel application (or one of its components) is conceived by select-
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ing and adequately assembling a small set of well-defined BBs modeling data
and control flows. The set of FastFlow BBs are sketched in Figure 2. They
comprise both parallel BBs, i.e. the pipeline composition (ff pipeline), task-
farm (ff farm), and all-to-all (ff a2a), and sequential BBs, i.e., standard node
(ff node), multi-input/output node (ff minode/monode), and the node com-
biner (ff comb) implementing the sequential compositions of FastFlow nodes.

FastFlow ’s BBs can be combined and nested in different ways forming either
acyclic or cyclic concurrency graphs, where nodes are FastFlow concurrent en-
tities and edges are communication channels carrying heap-allocated pointers.
They have either bounded or unbounded capacity (feedback channels always
have unbounded capacity). The concurrency control can be either blocking
or non-blocking (default). BBs mainly target system programmers who want
to build new frameworks, patterns or RTSs. All high-level parallel patterns
offered by the FastFlow library have been implemented using BBs.

Initially, FastFlow was designed to target multi/many-cores. Recently, its
run-time system has been extended to deploy FastFlow programs in distributed-
memory environments [8]. The distributed RTS has been implemented by
leveraging BBs and extending them with the objective of preserving the origi-
nal data-flow streaming programming model. By introducing a small number
of edits to programs already written using FastFlow ’s BBs, the programmer
may port its shared-memory parallel application to a hybrid implementation
(shared-memory plus distributed-memory) in which parts of the concurrency
graph will be executed in parallel on different machines according to the well-
known SPMD model. Such minimal refactoring involves the introduction of
Distributed Groups (called dgroups) concept, i.e., the identification of logical
partitions of the BBs composing the application streaming graph according
to a small set of graph-splitting rules [8]. A simple example of a FastFlow
shared-memory streaming application (left-hand side) partitioned into k dis-
tributed groups (right-hand side) is given in Figure 3. The dgroups have been
created by k − 1 horizontal graph cuts. In a nutshell, a graph cut is valid if
the resulting sub-graph can be expressed with the composition of BBs (i.e.,
is a valid FastFlow shared-memory application). Currently, inter-dgroup (i.e.,
inter-process) communications leverage raw TCP/IP or MPI, whereas intra-
dgroup communications use highly efficient lock-free shared-memory commu-
nication channels [16].

In the distributed FastFlow RTS, data serialization can be carried out in
two different ways. The programmer may select the best approach, between
the two, for each data type flowing into the inter-group channels (i.e., the data
types produced/received by the edge nodes of a dgroup). The first approach
employs the Cereal serialization library [17]. It can automatically serialize
base C++ types and compositions of C++ standard-library types; it just
requires the implementation of simple mapping functions for custom or user-
defined types. The second approach lets the user specify its serialization and
deserialization function pair. This might be useful, when feasible, to avoid any
extra copies needed by the serialization process itself. In this work, we always
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Fig. 3 FastFlow streaming graph example. The communication topology is defined as a
composition of BBss in a data-flow fashion. The concurrency graph can be partitioned into
distributed groups (dgroups) each implemented by a dedicated multi-threaded process. In
this example, the k dgroups have been obtained by cutting the a2a BB horizontally

use Cereal based serialization, which guarantees portable representations over
different platforms.

3 The SimilarityJoin pattern

3.1 Description

The similarity join pattern is exposed to users through a C++ templated
callable object, SimilarityJoin, in which inputs and outputs are based on
files. Once the template parameter T is fixed at the current datatype of the
application, the constructor requires the pattern configuration file’s path, the
input file’s path, a few functions, and, optionally, the size of the application
batching feature. The first function defines the parsing of a dataset’s line. It
returns a template-based struct (i.e., sj item<T>) holding the parsed data
and some other related metadata. Specifically, it contains three fields: content
representing the actual data, the dataset describing from which dataset the
item comes, and a unique identifier, id. We expect to have in the input dataset
a unique identifier and a tag to get the side (R or S). The next set of functions is
used to implement the locality-sensitive hashing (LSH) for a given item. Since
usually, the LSH functions are numerous (i.e., 8 or 16), they can be passed as a
list of functions (through an iterable std container or using the curly brackets
notation). Finally, the last function implements the similarity algorithm. It
returns true if the two passed items are similar, false otherwise. In this
proposed interface, all the functions may be provided using either lambdas
(i.e., anonymous functions), std::functions, or C++ functors. The object
must be called using the blocking () operator to start the execution without
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1 struct sj_item<T> {

2 size_t id; // unique identifier

3 int dataset; // R or S

4 T content;

5 };

6 SimilarityJoin<T> instance( configFilePath, inputFilePath,

7 [](const string& line) -> sj_item<T> { /* parse function */ },

8 {

9 [](const T& o) -> long { /* LSH function i*/ },

10 ...,

11 [](const T& o) -> long { /* LSH function n*/ }

12 },

13 [](const T& o1, const T& o2) -> bool { /* similarity function */ },

14 batchSize

15 );

16 instance();

Fig. 4 Similarity Join pattern’s interface for a generic data type T. It requires: a pattern
configuration file, a input dataset file path, a line parsing function, a set of LSH functions,
a similarity predicate, and the batching size (optional).

any parameter. An overview of the interface and its data types is sketched in
Figure 4.

The configuration file is required to specify the number of processes/hosts,
the process-host mapping and the quantity of mappers and reducers for each
server node. Thus, it is possible to run and tune the execution of a cluster of
heterogeneous machines (i.e., with different number of cores and main-memory
capacity). If the file is left blank or not found, the pattern assume the execution
with just one computing node (shared-memory execution) in which the mapper
and reducer parameters are set to the number of physical cores.

Concerning the input dataset, the SimilarityJoin pattern manages it as
follows: if the execution is in a single server node (i.e., shared-memory ex-
ecution), the dataset is expected to be provided as a single monolithic file.
Conversely, if the execution spans multiple server nodes, the dataset must be
split to assign a partition to each server node (for instance, using three server
nodes, the input file must be split/organized into three partitions). In addi-
tion, each part must be tagged with a suffix in the form ”000”, ”001”, etc.1.
The final output, similarly to what Hadoop does, is always written into the
disk using a separate file for each reducer.

3.2 Use cases

With the interface described in the previous section, it is possible to express
several scientific applications leveraging the LSH-based similarity join algo-
rithm and using different data types. This section presents two prominent
case studies: trajectories and sets.

1 For the case of equal sized partitions and k server nodes, the following split

Linux command can be used: split -d -n l/k --suffix-length=3 inputDatasetPath

outputDatasetPath
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1 using data_t = std::vector<std::tuple<double, double>>;

2 sj_item<data_t> parseDatasetLineF(const string& line) { ... }

3 long lsHash(const data_t& o, size_t id){ ... }

4 SimilarityJoin<data_t> trajExample( configFilePath, inputFilePath,

5 parseDatasetLineF, // parse function

6 {

7 std::bind(lsHash, 1), // 1st LSH function

8 ...,

9 std::bind(lsHash, n), // n-th LSH function

10 },

11 [](const data_t& o1, const data_t& o2) -> bool { // similarity function

12 return Frechet(o1,o2) < THRESHOLD;

13 }

14 );

Fig. 5 Example of usage of the SimilarityJoin pattern for the trajectories use-case. The
dataset parsing and LSH implementations are omitted for brevity.

Trajectories are seen as polygonal lines where each point belongs to Rd with
d the space dimension. Thus, the datatype T of the pattern can be something
like std::vector<std::tuple<double, double>> for a two-dimensional space.
The similarity algorithm employs the discrete distance of Fréchet [18] to com-
pare trajectories. The Fréchet distance is often explained by the following
metaphor: a man holds his dog on a leash, both are walking on finite trajec-
tories. Man and dog can vary their speed but cannot turn back. The Fréchet
continuous distance is the minimum length of the leash to connect the man
to his dog during the entire journey. To speed up the distance computations,
the algorithm uses several heuristics to test in near-linear time if two trajec-
tories have a distance less than a given threshold λ [19,20]. The Fréchet LSH
function family [21,22] uses a random grid of dimension d defined from a res-
olution σ and an origin randomly chosen in the half-open hypercube [0, σ[d.
Each trajectory is transformed into a sequence of grid nodes. The resulting
sequence is universally hashed to be used as a join attribute. The same proce-
dure is iterated several times to produce a good fraction of all pairs of similar
trajectories. Therefore, the Fréchet distance is only computed for trajectories
with the same sequence of grid nodes. The resolution parameter of the grid is
set to σ = 4 × d × λ as it was done in the experiments of [6,22]. Trajectories
application is used for the experimental evaluation in Section 4.

A second well-known similarity join application in the literature concerns
sets. It can be applied to different data-structure representing a group of ob-
jects. This can be easily done by varying the template parameter and adapting
LSH and similarity functions. Similarity join on sets has a large number of ap-
plications, including similar text detection [23,24], collaborative filtering [3],
and clustering of large malware dataset [25]. The pruning power of the set
similarity join is also used to reduce the number of candidate pairs for edit-
based string similarity joins [26]. A popular distance in the literature is the
Jaccard distance defined as Jaccard(u, v) = 1− ∥u ∩ v∥/∥u ∪ v∥ where ∥·∥ is
the cardinality of a set. MinHash is a family of LSH functions that estimates
the Jaccard distance. It takes advantage of a random permutation to retrieve
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Fig. 6 BBs-based implementation of the SimilarityJoin pattern: a pipeline of two all-to-alls.
The left-hand Workers are the Mappers. The right-hand side ones are the Reducers.

Fig. 7 Resource-optimized implementation of the SimilarityJoin pattern with Fast-
FlowBBs: a single all-to-all with feedback channels.

similar sets. Each set is hashed by its element with the smallest position in
the random permutation. The procedure is repeated several times to produce
almost all pairs of similar sets. We refer the reader to [27,28] for more de-
tailed information on MinHash and to [13] for details on the implementation
of MRS-join for set similarity join.

3.3 FastFlow -based implementation

This section describes the implementation of the SimilarityJoin pattern using
FastFlow as a back-end, allowing us to execute the application both in shared-
memory and distributed-memory environments using a single-source.

The algorithm can be implemented as a pipeline composition of two map-
reduce phases: the computation of histograms and the effective similarity join.
In FastFlow , we can implement it using a pipeline of two stages, each imple-
menting a map-reduce. The map-reduce paradigm can be easily implemented
using the a2a BB (i.e., all-to-all) as sketched in Figure 6. The mappers are
those FastFlow sequential BBs in the left-hand set of Workers of the all-to-
all, whereas the reducers are those sequential BBs in the right-hand set of
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Workers. However, since the two map-reduce phases are computed in batch,
i.e., computational phases do not overlap, the implementation can be real-
ized using a single all-to-all BB iterated two times by leveraging the feedback
modifier of the a2a BB In this way, mappers and reducers must contain the
business logic of both phases. The resulting graph topology is shown in Fig-
ure 7. Such reduced configuration optimizes resources halving the number of
FastFlow sequential nodes and increases flexibility when moving from shared
to distributed memory. In fact, exploiting a single all-to-all as a root BB allows
the resulting graph to be cut both vertically as well as horizontally (and also in
a mixed fashion) to create sub-graphs composing the distributed groups that
are still valid all-to-all BBs. Unlike Hadoop MapReduce, the implementation
does not store nor sort intermediate results on disks, preferring to store all data
in the main memory instead. However, this can also be seen as a weak point
of the current implementation in the case of huge datasets. Large datasets
cannot be executed on memory-constrained systems. In the FastFlow -based
implementation, mappers send directly to reducers the key-value pairs in a
streaming fashion using the shuffle communication pattern of the all-to-all BB.
The burden of sorting data is left to reducers that perform this step while
receiving data, partially amortizing its cost by overlapping the computation
time with those of mappers. The same kind of streaming-like computation is
also exploited in the next phase through feedback channel communications to
distribute the histograms back to mappers who merge to a local and private
data structure each received histogram partition.

We now briefly go through the main steps of the algorithm, giving some
details of how those are implemented in FastFlow. The first phase is the com-
putation of histograms. Mappers, in parallel, seek their part and start parsing
the memory-mapped dataset line by line calling the provided parsing function.
For each item, they invoke all the given LSH functions and emit the results to
the corresponding reducers along with the dataset tag (R/S). Reducers count
the frequency of hash values based on the dataset tag and store the sender id
of the mapper. The latter is used to send back, through the feedback chan-
nels, only the relevant frequencies to each mapper. The reducers trigger the
distribution of histograms once they have received all data from all mappers,
indicating that no more key-value pairs will be emitted in this phase. This
kind of end-of-phase signal is implemented at the pattern run-time with a cus-
tom <key, value> pair detected by the FastFlow BB implementing the a2a

reducers. Afterward, as soon as all histograms produced by the reducers are
received and merged by the mappers, the next phase (i.e., similarity join) can
start. Now, for each hashed value of all elements of the dataset partition, the
mapper knows the frequency of that value for both sides (R/S) and thus may
decide to discard or multicast the computed content to a proper subset of re-
ducers. A hashed value is discarded if it comes from a side and the frequency
of the other side is equal to zero. This pre-filter means that there are no items
of the other set that is possibly similar to the one being processed according to
the LSH family of functions provided. The number of reducers required to bal-
ance computation for that hash value is retrieved by computing the maximum
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1: function RandomUnicast(o,R0, R)
2: ff send out to(o, (R0 + (rand() mod R)) mod #totalReducers);

3: function Multicast(o,R0, R)
4: for i← 1 to R do
5: ff send out to(o, (i+R0) mod #totalReducers);

6: function Process(o, lsh)
7: if min{freqR(lsh), freqS(lsh)} = 0 then return;

8: #reducersreq ← min{⌈max{freqR(lsh),freqS(lsh)}
fmax

⌉,#totalReducers};
9: indexR0 ← lsh mod #totalReducers;
10: if freqR(lsh) > freqS(lsh) then
11: if o comes from R then RandomUnicast(o, indexR0,#reducersreq);
12: else Multicast(o, indexR0,#reducersreq);

13: else
14: if o comes from S then RandomUnicast(o, indexR0,#reducersreq);
15: else Multicast(o, indexR0,#reducersreq);

Fig. 8 Algorithm followed by the mappers during similarity join phase to implement the
randomised communication schema in FastFlow to ensure load balancing among reducers for
skewed datasets. The process function is the one called by the mapper for all LSH for each
object. Random Unicast and Broadcast are commodity procedure to wrap the FastFlow ’s
ff send out to method.

frequency between side R and S, divided by the parameter fmax. Such (fmax)
value denotes the number of per-key records that a reducer should store and
process during the similarity join step. The quantity of instantiated reducers
always bounds the computed number of required reducers. Once the number
of reducers is defined, we need to determine which ones will be used among all
we have available. To do so, we choose the first one and then all the subsequent
ones up to the amount needed. Then, the first reducer is chosen by computing
the modulo operation between the LSH value and the number of all instanti-
ated reducers. Then, if a hash comes from a side X element (between R and S)
and the maximum frequency is from the same side X, it will be sent to one of
the selected reducers. Otherwise, it will be sent to all selected reducers. This
way, we minimize the quantity of replicated data, broadcasting the elements
from the smaller sub-dataset (R or S) for a given key. This procedure is sum-
marized in Fig. 8 and is implemented exploiting the ff send out to method
of the multi-output sequential BB.

Once all the <key,value> have been generated during the second phase,
mappers send the FastFlow end-of-stream (EOS) message and terminate. Re-
ducers collect all the items and sort directly while receiving. As soon as all
EOS messages were received, the mapper of the similarity join procedure, is
triggered. Similarity join consists of testing the provided predicate over all the
possible combinations of the elements with the same locality-sensitive hash
key. For similar items, the reducer prints to its output file the pair of related
IDs.

In both map-reduce phases, data is sent from mappers to reducers in
batches. This feature has been added to reduce the number of exchanged
messages and, most of all, to optimize memory allocation for shared-memory
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executions. The batching size can be set in the pattern constructor, its default
value is set to 256.

Concerning the distributed-memory execution of the SimilarityJoin pat-
tern, the user needs to properly define the configuration file (the first parameter
of the pattern instance). Based on the number of lines contained in the config-
uration file, the corresponding number of horizontal cuts will be automatically
applied to the a2a BB, which defines the implementation skeleton of the pat-
tern. Each resulting dgroup has a unique identifier (e.g., G0..Gn where n is the
number of lines of the configuration file). These identifiers are used to define
the dgroup to server host mapping and to tag inter-group communications by
the FastFlow RTS. The Gk group is created with the number of Mappers and
Reducer specified by the user in the line-k of the configuration file. Commu-
nications between local group Mappers and Reducers happen in the shared-
memory domain (i.e., communication channels are implemented with lock-free
shared-memory queues), whereas communications from a Mapper in a group
and a Reducer in a different group happen in the distributed-memory domain
(i.e., inter-node communications). Data is serialized if the communication is
inter-dgroups. Data serialization is wholly entrusted to Cereal library, which
requires the user to provide a serialization function for type T specified in the
pattern template, if and only if T is a custom data type (i.e., user-defined
class or struct).

4 Experimental evaluation

In this section, we assess both the quality of the new C++ SimilarityJoin
pattern based on the FastFlow framework and its parallel performance on two
different clusters with different interconnections, main memory availability,
and number of cores per node. We consider the hand-tuned Hadoop-based
implementation of the MRS-join computation presented in [6] as the baseline.

4.1 Platforms

The experiments were carried out on two different clusters. The first one called
Mirev, is hosted by the University of Orléans, and it is composed of two servers
connected by a switched 1Gbit/s Ethernet network. Each server has 256GB of
memory and two Intel Xeon Gold 6248R CPUs running at 3.0GHz for a total
of 48 physical cores (96 hardware threads) and a fast dedicated NVMe disk for
local storage. The second cluster called Openhpc4 is hosted by the University
of Pisa’s Green Datacenter. It includes 16 nodes connected by a 100Gbit/s
Infiniband network. Each server is a diskless node with two Intel Xeon Silver
4114 CPUs running at 3.0GHz for a total of 20 physical cores (40 hardware
threads). About 128GB of memory is reserved for running applications on one
Openhpc4 cluster node. All distributed tests presented in this section were
executed using the TCP/IP transport protocol for the FastFlow -based imple-
mentation.
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Dataset
size

Similar items
in the dataset
(M=1,000,000)

Similarities found
Hadoop
version

FastFlow
version

5GB 50M 99.36% 99.51%
50GB 100M 99.34% 99.51%

100GB 1000M 99.35% 99.51%

Table 1 Percentage of similarities discovered by the two implementations for the three
distinct datasets considered. The Hadoop-based version is configured with 48 Mappers and
24 Reducers with 2GB and 4GB of memory, respectively. The FastFlow -based version is
configured with 24 Mappers and 24 Reducers and no memory limitations. The number of
LSH functions used is 8, the threshold value is set to λ = 10.

4.2 Datasets

To use different-sized datasets for the experiments, we employed a synthetic
data generator that allows us to specify the number of similarity join outputs.
To this end, the generator takes as parameters the number of clusters and
their sizes in the datasets R and S and a threshold value. For each cluster, the
algorithm generates a random trajectory used as a template. The cluster tra-
jectories take this template and alter it according to the given threshold. The
dataset is supplemented with noise, i.e., several random trajectories that will
not produce any similarity join output. For example, in the smallest dataset
(i.e., 5GB), there are 5,000 clusters of size 200 equally distributed in R and
S, with 2,000,000 additional random trajectories. For larger datasets, we in-
crease the number of clusters and the number of random trajectories by the
same factor so that the number of results produced follows the same scaling.
All generated trajectories are 2-dimensional and comprise an average of 50
points spaced according to the given threshold. In our tests, we used three
distinct datasets, namely: a “small” dataset of 5GB with 50 million of similar
trajectories, a “medium” dataset of 50GB with 500 million of similar trajec-
tories, and a “large” dataset of 100GB with 1 billion similar trajectories.

4.3 SimilarityJoin pattern validation

To validate the FastFlow -based SimilarityJoin pattern implementation, we
compared the number of similar trajectories found for the three datasets con-
sidered with those found by the Hadoop-based implementation proposed in [6].
The results obtained running the two versions on theMirev cluster are reported
in Table 1. The number of similar trajectories found (reported in percentage
in the table) for all datasets is almost the same. The FastFlow -based version
is capable of obtaining a small extra-fraction of similar trajectories. We did
not investigate deeply such a small difference. Reasonably, it could be due to
different random seeds. For the validation tests and for all performance tests
presented in the following, we used 8 LSH functions and a threshold value of
10 (i.e., n = 8 and λ = 10 in the code in Figure 5). It is worth noting that
by using 8 LSH functions, the memory requirement for the largest dataset is
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relevant (there is a factor on the input size of about 2.4X with 8 functions).
Specifically, the amount of memory needed to run the SimilarityJoin pattern
on a single node with the 100GB dataset is a bit more than 240GB. Therefore,
the FastFlow -based version cannot be executed either on a single Openhpc4
node or on a single Mirev node. In both server nodes, the virtual memory size
is equal to the physical memory available (that is equal to the nominal memory
minus the space used by the OS and the running services). For this reason, the
validation for the 100GB dataset with the FastFlow -based version has been
conducted on two Mirev nodes. Finally, the number of similarities found in the
dataset strongly depends on the number of LSH functions used. For example,
for the 5GB dataset, with 2 LSH functions, the similarity score falls to 73.7%
whereas with 16 LSH functions, the similarity score reaches 99.99%

4.4 Performance evaluation

The first test aims to evaluate the batchSize parameter of the SimilarityJoin
pattern (cf. Figure 4). This internal pattern parameter aims to reduce both
the number of messages exchanged between Mappers and Reducers in each
iteration phase and to intensify contiguous main memory allocation for mes-
sages in the FastFlow run-time. The results of the test conducted on one node
of both clusters are shown in Figure 9 (top left-hand side). The dataset is the
5GB one. The optimal value of the batchSize for both platforms falls in the
range 32− 512. With smaller values, the overhead of memory management is
higher in the FastFlow run-time. Higher values of batchSize might reduce
the pipeline parallelism between Mapper and Reducers.

The second test aims to estimate a good value for the number of Mappers
and Reducers for a single node. Again we used for the test the smallest dataset
(i.e., 5GB) and one single cluster node. The batchSize was fixed to 256.
Figure 9 shows the results obtained on one Mirev node (top right-hand side)
and on one Openhpc4 node (bottom left-hand side). In these tests, we did not
verify all possible configurations for the number of Mappers and Reducers.
Our aim was to estimate a “close-to-optimal” value for the per-node number
of Mapper and Reducer parameters of the SimilarityJoin pattern and to verify
that using either the total number of physical cores (assigning half of them for
the Mappers and the other half for the Reducers) or the total number of logical
cores (yet half and half) may be a reasonable choice for those parameters.
Specifically, in the Mirev node the best value among those tested are 24− 24,
whereas on the Openhpc4 node the best values are 20 − 20 (thus filling all
logical cores for a node).

The next test was to estimate a good value of the distributed batching
size (called dFF batch) of the FastFlow run-time system to optimize the net-
work bandwidth in distributed communications transparently. For this test,
we employed two nodes of the two clusters. Unlike the batchSize param-
eter, the distributed batching configuration parameter is used only for dis-
tributed communications between non-local-node Mappers and Reducers. Such
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Fig. 9 Dataset size: 5GB. Top left: Impact on the execution time of the batchSize pa-
rameter. Top right: Execution time varying the number of Mapper and Reducer on a single
Mirev node (batchSize=256). Bottom left: Execution time varying the number of Mapper
and Reducer on a single Openhpc4 node (batchSize=256). Bottom right: Impact on the
execution time of the FastFlow distributed batching on two cluster nodes (batchSize=256).

value depends on the amount of data transmitted (thus also depends on the
value of the batchSize) and the kind of network and protocol used. How-
ever, as it can be seen from Figure 9 (bottom right-hand side), with large
enough application batching (i.e., batchSize=256), there is no significant dif-
ference between the case of dFF batch=1 (i.e., no distributed batching) and
the case of dFF batch=8, in particular for the fastest network (i.e., Infiniband
in the Openhpc4 cluster). Given the results of this test, we decided to set the
dFF batch to 4 for the SimilarityJoin pattern implementation. All subsequent
tests were executed with such fixed value regardless of the cluster used.

Once all pattern parameters had been studied (i.e., batchSize, number
of per-node Mappers and Reducers, and the dFF batch) we tested the Sim-
ilarityJoin pattern scalability by increasing both the dataset size as well as
the number of cluster nodes. Table 2 summarizes the results obtained on the
Openhpc4 cluster for the three datasets considered varying the number of
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Dataset
size

Execution time
Openhpc4 Mirev

1 2 4 8 16 1 2

5GB 46s 23s 14.5s 11.7s 7.7s 17s 25s
50GB no mem 299s 143s 88s 52s 283s 228s

100GB no mem no mem 298s 154s 82s no mem 450s

Table 2 Execution times (in seconds) varying the number of machines up to 16 nodes
on the Openhpc4 cluster and up to 2 nodes on the Mirev cluster for the three datasets
considered. Configuration: 20 Mappers and 20 Reducers per node on Openhpc4, 24 Mappers
and 24 Reducers per node on Mirev, batchSize=512, dFF batch=4. The 50GB and 100GB
datasets cannot be executed in all configurations due to the lack of main memory.

Dataset
size

Hadoop version
(Exec. time)

FastFlow version
Improvement

1 2 1 2

5GB 133s 140s 7.8X 5.6X
50GB 507s 537s 1.8X 2.4X
100GB 1040s 775s none 1.7X

Table 3 Execution times (in seconds) of the Hadoop version when using 1 and 2 nodes on
the Mirev cluster. Hadoop configuration: 48 Mappers and 24 Reducers (2GB and 4GB of
memory each, respectively). Improvement factor of the FastFlow -based version (cf. Table 2)
vs. the Hadoop one on the same cluster. The 100GB dataset, cannot be executed on one
single node by the FastFlow -based version due to the lack of available main memory.

nodes from 1 to 16. Given the relatively small amount of main memory avail-
able on each node of the Openhpc4 cluster, the 50GB and 100GB datasets
cannot be executed on 1 and 2 cluster nodes, respectively. However, the ex-
ecution time scales reasonably well with the number of nodes for the most
extensive dataset (100GB). On the Mirev cluster, given the additional num-
ber of cores per processor and the slower network, there is no performance
improvement when moving from 1 node to 2 nodes for the 5GB dataset. The
single-node shared-memory version of the pattern exploiting all physical cores
of the machine (i.e., 24+24) is already relatively fast (about 17s). For the 50GB
dataset, the execution time improvement is marginal, from 283 to 228 seconds.
Instead, the SimilarityJoin pattern cannot be executed for the largest dataset
on a single node because of insufficient main memory. Still, it can be run on
two nodes giving an execution time of about 450s. We executed the Hadoop
version on theMirev cluster for all datasets to have a performance comparison.
The Hadoop framework is configured to use the HDFS filesystem with 1 name
node and 2 data node. The results obtained are shown in Table 3. As expected,
the overhead introduced by the Hadoop framework is not negligible for small
datasets. On the other hand, for big datasets, Hadoop can execute on a single
node with constrained memory (192GB) and obtains a relevant reduction of
the execution time of about 300s on two cluster nodes. The execution time
differences between the Hadoop version and the SimilarityJoin pattern imple-
mented in FastFlow , are primarily due to: i) the extensive use of the HDFS
filesystems in Hadoop, which introduces overheads but enables running with
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“Larger-than-Memory” datasets; ii) the storing of intermediate phase results
into files; iii) the serialization of all messages between Mappers and Reducers.
Finally, Hadoop provides the user with fault-tolerance capability (though not
enabled in our tests), a feature currently missing in the SimilarityJoin pattern
implementation. Reasonably, we may expect the larger the input dataset, the
better the performance of the Hadoop version.

5 Related Work

Exact similarity joins have received considerable attention. Filtering and ver-
ification techniques use filters to eliminate comparisons that cannot reach the
threshold distance. However, such techniques are metric-space-dependent and
cannot be applied to the general case. On the other hand, the metric-space-
partitioning technique permits handling the similarity join for any metric
space. Nevertheless, the experimental survey [29] on exact set similarity joins
shows that these methods often fail to compute the join on small datasets.
Recently in [30], “Bloom filters” and “Fuzzy filters” were introduced for fuzzy
join operations to eliminate most non-joining elements in the input dataset be-
fore sending the data to the join processing step. Thus, it reduces intermediate
data and unnecessary comparisons. However, these approaches may face scala-
bility problems when the probabilistic data structures used to store the filters
cannot fit in the main memory of the processing nodes, especially for massive
datasets. In an approximate context, i.e., algorithms that do not produce the
total results, similarity join algorithms are usually based on Locality Sensitive
Hashing (LSH) to generate candidate pairs by hashing similar input records
into the same “buckets” with high probability. This drastically reduces the
number of pair comparisons and generates almost all similarity join results.
In the context of massively parallel computations, some recent works [31,32]
present an algorithm relying on LSH that achieves guarantees on the result
completeness and good utilization of the processing nodes. However, in the
case of large and skewed datasets, the workload balance among computing
nodes is not ensured. Recently, [33] extented the analysis and improved the
algorithm using sketching and deduplication.

Concerning programmability, offering easy-to-use yet sophisticated parallel
pattern for specific application domains to end-users, who are not necessarily
familiar with parallel programming, is a relevant research topic in the fields of
high performance distributed computing. Notably, several parallel program-
ming libraries or domain-specific languages (DSLs) have been proposed in the
context of structured parallel programming [34], e.g., Muesli [35], SkePU [36],
SkeTo [37], GrPPI [38], SkelCL [39], Musket [40] and SPar [41]. FastFlow [7]
owns to this category but, in addition to some high-level parallel patterns,
it also provides a lower-level software layer to the parallel programmers (i.e.,
Building Blocks) to enable the easy development of new patterns and run-times
system yet following the structured parallel programming methodology [14].
Several examples of domain-specific parallel patterns can be found in the liter-
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ature, ranging from exact combinatorial search [42] in the distributed-memory
domain to image filtering for visual data restoration [43] based for heteroge-
neous many-cores equipped with GPU accelerators, to Window-based stateful
data-streaming operators for multi-core systems [44]. In the field of similarity
joins, some works targeted different methodologies for different architectures:
HySet [45] and fgssjoin [46], offering set similarity exploiting both CPU and
GPU accelerators but not clusters, whereas in [47] the authors proposed an
online streaming approach using distributed systems. However, all previous
works focus mainly on set similarity, while the SimilarityJoin pattern we pro-
posed in this work aims to target all similarity join operations.

6 Conclusions and Future Work

We proposed SimilarityJoin, a C++ high-level parallel pattern for comput-
ing similarity joins that relieves the user from many hidden pitfalls related
to parallel programming. The implementation, based on FastFlow ’s BBs, fol-
lows the MapReduce computation paradigm, enabling efficient execution on
a single multi-core server and a cluster of multi-cores. The proposed solution
has been validated using different-sized datasets, and its scalability has been
studied on a 16-node cluster. Additionally, an initial performance comparison
with a hand-tuned Hadoop implementation of the same use case has yielded
interesting qualitative and quantitative results.

In future work, we intend to improve the memory management of the Sim-
ilarityJoin pattern to enable the execution of “larger-than-memory” datasets
and tune its absolute performance by comparing it with other Big-Data frame-
works such as Spark [48], optimized for in-memory computing.
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curves in near linear time. CoRR abs/1003.0460 (2010)
21. Driemel, A., Silvestri, F.: Locality-Sensitive Hashing of Curves. In: B. Aronov, M.J. Katz

(eds.) 33rd International Symposium on Computational Geometry (SoCG 2017), Leibniz
International Proceedings in Informatics (LIPIcs), vol. 77, pp. 37:1–37:16. Dagstuhl,
Germany (2017). DOI 10.4230/LIPIcs.SoCG.2017.37

22. Ceccarello, M., Driemel, A., Silvestri, F.: Fresh: Fréchet similarity with hashing. In:
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Abstract Prolog systems rely on an atom table for symbol management, 
which is usually implemented as a dynamically resizeable hash table. This is 
ideal for single threaded execution, but can become a bottleneck in a multi-
threaded scenario. In this work, we replace the original atom table 
implemen-tation in the Yet Another Prolog (YAP) system with a lock-free 
hash-based data structure, named Lock-free Hash Tries (LFHT), in order to 
provide effi-cient and scalable symbol management. Being lock-free, the new 
implementa-tion also provides better guarantees, namely, immunity to 
priority inversion, to deadlocks and to livelocks. Performance results show 
that the new lock-free LFHT implementation has better results in single 
threaded execution and much better scalability than the original lock based 
dynamically resizing hash table.
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1 Introduction

The initial programming languages were designed to abstract the computer 
hardware where, to achieve reasonable performance, a developer would have 
to learn first how to express the algorithmic problems in machine-oriented 
terms. Higher-level languages were created to allow developers to program 
algorithmic resolutions in terms closer to the problem’s conceptualization. It 
is believed that higher-level languages are particularly helpful in developing
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succinct and correct programs that are easy to write and also easy to under-
stand. Logic programming languages, together with functional programming
languages, form a major class of such languages, called declarative languages,
and because logic programming languages are based on the predicate calcu-
lus, they have a strong mathematical basis.

Prolog is the most popular and powerful logic programming language.
Prolog gained its popularity mostly because of the success of the sophisticated
compilation technique and abstract machine known as the Warren’s Abstract
Machine (WAM) presented by David H.D. Warren in 1983 [24]. Nowadays, it
is widely used in multiple domains, such as, machine learning [16], program
analysis [7], natural language analysis [15], bioinformatics [14] and semantic
web [8]. Prolog systems represent data as terms, that can be number, strings,
or atoms, or a composition of terms. Prolog atoms are particularly important,
as they are both used as symbols and as a convenient representation of strings.
In this work, we focus on the Atom Table used for atom management and we
investigate whether the traditional design can still be a good solution for
recent challenges Prolog systems face.

One such challenge is to take best advantage of multi-core/multi-threaded
architectures, arguably one of the most popular and impactful recent hard-
ware developments. This type of architectures allow greater performance,
but resources must be properly managed and exploited. Many languages and
systems were not originally designed for multi-processing, which required
them to be later extended to support this type of architectures, and Prolog
systems were no exception.

Multi-threading in Prolog is the ability to perform concurrent compu-
tations, in which each thread runs independently but shares the program
clauses [13]. Almost all Prolog systems support some sort of multi-threading.
In particular, the Yet Another Prolog (YAP) multi-threading library [18] can be
seen as a high-level interface to the POSIX threads library, where each thread
runs on a separate data area but shares access to the global data structures
(code area, atom table and predicate table). As each thread operates its own
execution stack, it is natural to associate each thread with an independent
computation that can run in parallel as threads already include all the ma-
chinery to support shared access and updates to the global data structures
and input/output structures.

In this paper, we replace the original atom table implementation in the
YAP system with a lock-free hash-based data structure, named Lock-free
Hash Tries (LFHT), in order to investigate whether an efficient and scalable
symbol management, can make a difference in a multi-threaded environment.
Performance results show that the new implementation shows better results
both in single threaded execution and much better scalability than the original
atom table.

The remainder of the paper is organized as follows. First, we introduce
relevant background and present the main ideas of our design. Next, we
describe in detail the points required to easily reproduce our implementation.
Then, we present a set of experiments comparing the new atom table against
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the original one. At the end, we present conclusions and draw further work
directions.

2 Background

In this section, we describe the context of our work with particular focus on
the YAP system, the concurrent access to the atom table, and the LFHT design.

2.1 The YAP System

Yet Another Prolog (YAP) is a Prolog system originally developed in the mid-
eighties and that has been under almost constant development since then [19].

Figure 1 presents a high-level picture of the YAP system. The system is
written in C and Prolog. Interaction with the system always starts through the
top-level Prolog library. Eventually, the top-level refers to the core C libraries.
The main functionality of the core C libraries includes starting the Prolog
engine, calling the Prolog clause compiler, and maintaining the Prolog internal
database. The engine may also call the just-in-time indexer (JITI) [20]. Both
the compiler and the JITI rely on an assembler to generate code that is stored
in the internal database. The C-core libraries further include the parser and
several built-ins (not shown in Fig. 1). An SWI-Prolog compatible threads
library [25] provides support to thread creation and termination, and access
to locking.

Engine
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YapOr

YapTab

YAAM

Emulator

Compiler

Assembler

JITI

Clause Compiler

Internal

Database

Libraries

Prolog-Core Libraries

SWI Emulation

Top-Level

C-Core Libraries

C-Foreign Interface

Threads Library

User C

File

YAP Prolog

User Prolog

File

Fig. 1 The YAP system

YAP includes two main components, the Engine and the Database. The En-
gine maintains the abstract machine internal state, such as abstract registers,
stack pointers, and active exceptions. The Database maintains the root point-
ers to the internal database, which includes the Atom Table and the Predicate
Table. In order to support multi-threading, YAP’s data structures are organized
as follows:
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– the GLOBAL structure is available to all threads and references the global
data structures; locks should protect access to these data structures.

– the LOCAL structure is a per-thread array referencing the thread’s local
data structures, e.g., the engine abstract registers, internal exceptions, and
thread specific predicates. The data is accessible through the thread’sLOCAL
structure, whose address is available from thread-local storage.

Figure 2 presents in more detail YAP’s internal data structures with par-
ticular emphasis on the atom table. It assumes support for two threads, hence
it requires two LOCAL structures, each containing a copy of the corresponding
WAM registers.
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WAM Registers

GLOBAL

Predicate

Table

hello

port

NextOfAE
+

$live

PropsOfAE

OP
NextOfPE

FUNC

PropsOfAE

PRED

NextOfAE

NextOfAE

NextOfAE

LOCAL 2

WAM Registers

Atom Table

.
.
.

Predicate

Table

Fig. 2 YAP’s internal data structures

The main structure inside GLOBAL is the Atom Table, which contains objects
of the abstract type Atom. As discussed above, atoms are used to represent
symbols and text. The latter usage stems because the same text can appear in
different parts of a program. Storing text as atoms can save both space and
time, once to compare two segments one just has to compare atoms, e.g., two
text segments match if and only if they are the same atom, that is, if they have
the same entry in the atom table. At the implementation level, the atoms are
stored in a linked-list and each node within that linked-list has a reference
to a secondary linked-list, that holds the properties of the atoms. Predicates
with atoms as name are also stored in the atom table. Predicates are also often
present in a Prolog program and there might exist several predicates with the
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same name (but with a different arity or belonging to different modules), and
in such situations, there is a direct hash-table for them.

The abstract type Atom has a single concrete type, AtomEntry. Thus, the
atom table is implemented as a single-level bucket array hash table with a sep-
arate chaining mechanism, implemented as linked lists, to support collisions
among AtomEntry objects. Once the bucket array data structure is saturated,
the hash table duplicates its size, and the AtomEntry objects are placed in the
newly created data structure. Each AtomEntry contains

1. StrOfAE: a C representation of the atom’s string;
2. NextOfAE: a pointer to the next atom in the linked list for this hash entry;
3. PropsOfAE: a pointer to a linked list of atom properties;
4. ARWLock: a reader-writer lock that serializes access to the atom.

The Prop type abstracts objects that we refer to by the atom’s name. Exam-
ple subtypes of Prop include functors, modules, operators, global variables,
blackboard entries, and predicates. All of them are available by looking up an
atom and following the linked list of Prop objects.

Figure 2 shows an atom table with four atoms: hello, +, port, and $live.
Notice that only + and $live have associated properties. In practice, most
atoms do not have properties. Every concrete type of Prop implements two
fields:

1. KindOfPE gives the type of property;
2. NextOfPE allows organizing properties for the same atom as a linked list.

Each property extends the abstract property in its own way. As an example,
functors add three extra fields: a back pointer to the atom, the functor’s arity,
and a list of predicates that share the same name and arity, but belong to
different modules.

This design is based on LISP implementations, and has been remarkably
stable throughout the history of the system. Main optimizations and exten-
sions include:

1. Older versions of YAP support two atom tables: one groups all ISO-Latin-1
atoms, where each character code c is such that 0 < c < 255, and the other
stores atoms that need to be represented as wide strings. Recent versions
of YAP use UTF-8 internally.

2. As discussed above, functors have their own Prop objects, namely, predi-
cates and internal database keys with that functor. This was implemented
to improve performance of meta-calls.

3. The case where we have predicates with the same functor but belonging to
different modules is addressed by a predicate hash-table, which allows direct
access to a predicate from a functor-module key. A typical example is the
TildeCRF machine learning algorithm, implemented in YAP by Guttman
and Kersting [10]. TildeCRF uses learning from interpretations, where
each example is a small program containing different combinations of the
same concepts, such that, each example is associated to a module and each
concept to a predicate.
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In Fig. 2, the atom + has two properties: one of the type op and another of
type functor. The atom $live has a property of type predicate.

2.2 Lock-Free Hash Tries

YAP’s atom table uses single-level hash buckets that doubles size once they
are saturated. Concurrent accesses to the atom table are serialized by the use
of reader-writer locks.

Lock-freedom is an alternative to lock based data structures that allows in-
dividual threads to starve but guarantees system-wide throughput. Lock-free
data structures offer several advantages over their lock-based counterparts,
such as, being immune to deadlocks, lock convoying and priority inversion,
and being preemption tolerant, which ensures similar performance regard-
less of the thread scheduling policy. Lock-freedom takes advantage of the
Compare-And-Swap (CAS) atomic primitive that nowadays is widely found on
many common architectures. CAS reduces the granularity of the synchroniza-
tion when threads access concurrent areas, but still suffers from contention
points where synchronized operations are done on the same memory loca-
tions, leading to problems such as false sharing or cache memory ping pong
effects.

Hash tries [6] minimize these problems by dispersing the concurrent areas
as much as possible. Hash tries (or hash array mapped tries) are a trie-based
data structure with nearly ideal characteristics for the implementation of
hash tables. An essential property of the trie data structure is that common
prefixes are stored only once [9], which in the context of hash tables allows
us to efficiently solve the problems of setting the size of the initial hash
table and of dynamically resizing it in order to deal with hash collisions.
Several approaches exist in the literature for the implementation of lock-free
hash tables, such as Shalev and Shavit split-ordered lists [21], Triplett et al.
relativistic hash tables [23] or Prokopec et al. CTries [17].

The Lock-Free Hash Tries (LFHT) design, as originally proposed by Areias
and Rocha [1,2], is a tree based data structure implementing two types of
nodes: hash nodes, used to represent the hierarchy of hash levels where keys
are indexed; and leaf nodes, used to store the key-value pairs. Figure 3 shows
the general architecture of the LFHT design.

Each key is used to compute a hash h, which is then used to map the
corresponding key-value pair in the LFHT hierarchy. For that, it uses chunks
of w bits from h to index the entry in the appropriate hash level, i.e., for
each hash level Hi, it uses the ith group of w bits of h to index the entry in the
appropriate bucket array of Hi. All bucket entries in a hash node are initialized
with a reference to the hash node itself. During execution, each bucket entry
stores either a reference to a hash node (itself or a deeper hash node) or a
reference to a separate chaining mechanism of leaf nodes, that deals with the
hash collisions for that entry. Intermediate leaf nodes hold a reference to the
next-on-chain leaf node.
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Fig. 3 General architecture of the LFHT design

To find the value associated with a given key, it begins by computing the
corresponding hash value. Then, nodes are searched in the LFHT structure by
following the path given by the hash value. If the key exists, it will be found
in a leaf node and the corresponding associated value is returned.

The original LFHT design was implemented in C and proposed in the
context of YAP’s concurrent tabling engine [1]. In a nutshell, tabling is a
refinement of Prolog’s standard resolution that stems from one simple idea:
save intermediate answers for current computations, in a specific data area
called the table space, so that they can be reused when a similar computation
appears during the resolution process. This means that in a traditional tabling
environment, only concurrent search and insert operations are executed. The
authors of LFHT took advantage of this fact to create a table space design that
would be as efficient as possible in these two operations. Since no remove
operations were executed concurrently, no emphasis was given to memory
reclamation. All memory used to represent the table space would remain valid
during the execution of a concurrent tabled logic program. Only at the end,
when running in single-threaded mode, could memory resources be released
to the operating system.

As LFHT obtained interesting results, the authors consider the possibility
of extending it to support the remove operation in order to make LFHT avail-
able as a standalone data structure. However, supporting removals implied
that the design would have to support some sort of memory reclamation or
garbage collection mechanism or, alternatively, to be implemented on top of a
framework that would do that by default. The authors decided to exploit the
advantages of the Java Virtual Machine (JVM) and re-implemented the design
from scratch in Java, adding the support for the remove operation [3].

To maintain LFHT’s lock-freedom property, the remove operation was
implemented in three stages. On the first stage, the memory is logically re-
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moved, i.e., the block of memory m being removed is marked with some
sort of tag in such a way that all other threads know that the information
in m is no longer valid. On the second stage, all the memory references to
m stored in other structures are deleted, meaning that, from a given instant
of time, threads entering the LFHT data structure no longer see or reach the
memory m. Finally, on the third stage, the memory is physically released, i.e.,
the memory m can be reused in other context or freed to the host operating
system. In this three stages scenario, JVM’s garbage collector is very useful
as it already implements the third stage by default, leaving the focus on the
implementation of the first and second stages. In 2021, the LFHT design was
dully formalized to prove its correctness, in particular the expand operation
that handles with key collisions [4], and more recently, the design evolved as
a standalone Java application with new features and operations, such as, the
compress operation that is able to free unused hash levels [5].

At the same time, and starting from the ideas in the Java implementa-
tion with the remove operation, the LFHT implementation in C was adapted
and extended to support a memory reclamation scheme that could fully sup-
port the three stages described above without losing the lock-freedom prop-
erty [12], meaning that the design could finally meet the goal of being used
as a standalone data structure and application. Experimental results showed
that such a design is very competitive and scalable, when compared against
the Concurrent Hash-Map implementation used in the Intel’s Thread Building
Blocks (TBB) library. More recently, the LFHT design was improved even fur-
ther with a compression based design that would improve throughput [11].

3 Our Proposal

This section describes our proposal to improve the performance of YAP’s atom
table in concurrent environments. For that, we replaced the original version
of the atom table, based in single level hashing, by the LFHT design in such
a way that, instead of having a specialized version of a concurrent hash table
implementing the atom table, we can simply use the general purpose LFHT
design and allow it to manage everything, which goes from managing the
concurrent accesses, to indexing the atoms for a faster access and handling
atom collisions through a highly efficient chaining mechanisms. Moreover, to
free memory from the atom table, we also take advantage of LFHT’s mem-
ory reclamation mechanism, which will automatically handle the physical
removal of atoms and corresponding internal data structures.

In what follows, we show in more detail how the LFHT data structure was
integrated into the YAP system. To make the integration as smooth as possible,
we need to understand all the details regarding YAP’s internal database and
how it is accessible from all internal and external libraries and data structures.
Figure 4 presents the new organization of YAP’s internal data structures based
in the LFHT design (for comparison with Fig. 2, we left in gray the parts that
were not changed from the original design). For the sake of presentation, the
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LFHT hash levels shown at the left of the figure are presented in a compact
way as a single level, representing the initial configuration, which will be
expanded during executing to multiples levels as described in the previous
section.
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Fig. 4 The new organization of YAP’s internal data structures

When comparing the new organization in Fig. 4 with the previous one in
Fig. 2, one can observe two main modifications. The original NextOfAE field
was removed, since the chaining mechanism will be managed by LFHT’s
design, and the read-writer lock ARWLock, used to serialize the access to the
atoms in the original version of the atom table, was also removed, since now
the LFHT design only uses CAS operations.

Using CAS operations instead of read-writer locks has some advantages.
It can potentially reduce significantly the number of write operations done
in memory during the execution of a program. At the implementation level,
a read-write lock, requires writing operations even in when threads are only
reading information from a protected memory region. This happens because
read-write locks need to keep track of the number of threads that are in a
protected memory region and, to do so, they use standard atomic counters.
Moreover, these writing operations require also memory barriers to ensure
the consistency of memory operations. These memory barriers have a con-
siderable cost in the performance of a system, since they apply an ordering
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constraint between all memory operations that occur before and after the
memory barrier, affecting this way all running threads.

Note that LFHT does not completely avoid memory barriers, as the CAS
operation also uses them when executing a write operation. The gain comes
from the fact that the design is lock-free, which means that reading operations
do not require any write operations.

The remaining data structures and references are unchanged. This is the
case of the PropsOfAE pointer to the atom’s properties and the StrOfAE repre-
sentation of the atom’s string, therefore allowing the other YAP’s data struc-
tures, such as the Predicate Table, to still access the atoms’ information as they
do in the original design.

In order to fully replace YAP’s atom table with LFHT’s design, some
additional extensions were required to ensure full compatibility with the
original design. These extensions include: (i) support for arbitrary keys and
full-hashing collisions; and (ii) an iteration mechanism capable of traversing
all keys stored in the atom table in a given instant of time. In the following
subsections, we discuss how these extensions were implemented.

3.1 Arbitrary Keys

By default, the LFHT implementation assumes that the hash function is good
enough to avoid key collisions, meaning that it relies only on the generated
hash value to find a key, thus not considering the case of two keys generating
the same hash value. To also consider this situation, when searching for a key
K, we still use the hash value h to move through the hash levels but, when a
node N corresponding to h is found, we need to confirm that N holds K. And,
if this is not the case, we keep searching for the next node corresponding to h
that may hold K.

YAP’s atom table uses strings as keys, and although we could add sup-
port for strings to LFHT’s design, we decided to implement a more general
solution independently of the type of the key. During LFHT’s initialization,
now we must give the following parameters: (i) a key comparison function;
(ii) a hash function; and (iii) a key destructor function. The key comparison
function should implement the comparison of keys to be used in the hash
value searching mechanism. The hash function allows to simplify the API,
since now we only need the key as argument to the LFHT operations instead
of both the key and the hash value. The key destructor functions allows to free
memory used by the key when we remove a node. We also allow for any of
these parameters to be undefined, and in such case we disable the associated
feature. For example, if no hash function is defined, we assume that the given
key is the hash itself, if no key comparison function is passed, we assume that
the user knows that hash values will not collide, and if no key destructor is
passed, we assume that the key will never be deleted during the execution.
Figure 5 shows the new C language high-level API of the LFHT data structure.
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// Initializes the data structure and returns a handler
struct lfht_head *init_lfht(size_t (*hash_func)(void *),

int (*key_cmp)(void *, void *), void (*key_free)(void *));

// Returns the value associated with the key if it exists
void *lfht_search(struct lfht_head *head, void *key);

// Returns the value associated with the key if it exists,
// otherwise inserts the key with the provided value
void *lfht_insert(struct lfht_head *head, void *key, void *value);

// Removes the key and returns the associated value
void *lfht_remove(struct lfht_head *head, void *key);

// Returns the next key in hash/key order
void *lfht_next_key(struct lfht_head *head, void *key);

Fig. 5 C language high-level API of the LFHT data structure

3.2 The Iteration Procedure

During the execution of a program, a Prolog system might be required to
iterate over all atoms present in the atom table. YAP is no exception, thus
LFHT data structure was extended to support this additional operation. In
a nutshell, the iterator of LFHT data structure presents atoms by the natural
order that their hash value appears in the data structure for collision free
atoms, otherwise, the LFHT data structure consumes the atoms by the natural
order of their keys.

At the implementation level, the iterator begins by presenting the atom
with the lowest hash value. And then, to present the next atom it uses the
previously presented atom, and the process continues until there are no more
atoms to be presented. If there are atoms with the same hash value, it presents
the next smallest key with the same hash value. Otherwise, returns the small-
est key of the next available smallest hash. By iterating this way, it ensures
that iteration is done over all keys that were present when the iteration began
and that were not removed during the iteration process. Keys that are inserted
concurrently during an iteration might not be presented, this will happen if
the iterator is iterating over a hash value which is higher than the hash value
of the key that was inserted.

Algorithm 1 shows how the iteration process is done over the hash nodes,
in order to find the next key. Note that we use the hash value from the most
significant bits to the least significant bits from the first level to the last level,
so that we can have the property that nodes in a bucket B[i] always have
smaller hash values than nodes in a bucket B[k] in the same hash node (for
i < k). To find the first key we pass the Null key to the Iterator function
which lets us start at the bucket entry corresponding to the hash with value
0. Otherwise, we compute the hash value from the key and start iterating
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from the corresponding bucket. We begin in the root hash node and, if in the
corresponding bucket we find a new hash node, we try to recursively find
a next key in such hash node. If the bucket contains leaf nodes we call the
IterateChain() function described in Algorithm 2 in order to find a next key in
the chain. In both situations, if we find such a key we return it, otherwise we
continue searching in the next bucket. If we reach the end of the hash node
without finding a key, we return Null in order to indicate no key was found.

Algorithm 1 Iterate(Key K, Node Hn)
1: if K = Null then
2: H⇐ 0
3: else
4: H⇐ Hash(K)
5: for i⇐ Index(Hn,H) to Hn.size do
6: if Hn.array[i].type = HASHNODE and Hn.array[i] , Hn then
7: R⇐ Iterate(K,Hn.array[i])
8: else if Hn.array[i].type = LEAFNODE then
9: R⇐ IterateChain(K,H,Hn.array[i])

10: if R , Null then
11: return R
12: return Null

Algorithm 2 shows how we find the next node in a chain. We need to
iterate over the whole chain as the nodes are unordered in the chain. We start
by filtering the nodes that are actually ordered after the key provided, then
we start by assigning the 1st node to N and replace it if we find a node that is
ordered before it1.

Algorithm 2 IterateChain(Key K, Hash H, Node Ln)
1: N⇐ Null
2: while Ln.type = LEAFNODE do
3: if Ln.hash > H or (Ln.hash = H and (K = Null or Ln.key > K)) then
4: if N = Null or Ln.hash < N.hash or (Ln.hash = N.hash and

Ln.key < N.key) then
5: N⇐ Ln
6: Ln⇐ Ln.next
7: return N

4 Experimental Results

In order to evaluate the impact of our proposal, we next show experimental
results comparing the original and new versions of YAP’s atom table. To put

1 Note that, for the sake of simplicity, we are omitting how the iterator proceeds when a
concurrent expansion of hash nodes occurs.
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the results in perspective, we also compare both YAP’s implementations with
SWI-Prolog, a well-known and popular Prolog system that also implements
concurrent support for the atom table in a lock-free fashion [26]. SWI-Prolog
uses a single-level hash design to implement the atom table with lock-free
operations, except for the resizing of the hash table, which is not lock-free
because it uses a standard read-writer locking scheme. This happens because
while the resize is in progress, the next pointers linking atoms in the same
bucket are generally incorrect, and dealing with this incorrectness is not a
trivial task, which is solved with a standard read-writer lock.

The hardware used was a machine with 4 AMD Opteron(TM) Processor
8425 HE with 6 cores each, 64KiB of L1 cache per core, 512KiB of L2 cache per
core and 5MiB of usable shared L3 cache per CPU. It had a total of 128GiB of
DDR3 memory. The machine was running the Ubuntu 22.04 operating system
with Linux kernel version 5.15.0-69.

4.1 Benchmark

We describe next the benchmark used to evaluate the performance of our
implementation. In a nutshell, the benchmark will generate a huge stress
over the Prolog’s atom table, by inserting an enormous amount of atoms in a
multi-threaded fashion. Although it is an artificial benchmark, it is designed
to expose all the potential bottlenecks in the atom table, allowing a deeper
study about using the LFHT design in YAP. Next, we show the pipeline of
predicates used in the benchmark.

% compile the generation sequences
:- compile(’seq.pl’).

% top query call
benchmark(WO, T):-
atom_dataset(DS),
% mark the inital time
statistics(walltime ,[InitTime ,_]),
% create and join threads
findall(Id, (between(1, T,_),

thread_create(worker(DS, WO),Id)), Ids),
forall(member(I,Ids), thread_join(I,_)),
% mark the final time
statistics(walltime ,[EndTime,_]),
Time is EndTime - InitTime ,
% show the execution time
write(’Time: ’), write(Time).

Fig. 6 Initial setup and top query call

We begin with Fig. 6 showing the Prolog code for the initial setup of the
benchmark and the benchmark/2 predicate, which is the top predicate to be
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called. We start by compiling an initial set (file seq.pl) of 240, 000 different
sequences that will be used as base sequences to generate a combination of
multiple atoms to be inserted in the atom table. The benchmark/2 predicate is
then used to mark the initial and final times, create and join threads, and to
show the execution time. It receives two arguments, the worker offset WO,
used to batch a set of sequences from the initial set that will be used to create
the combination of atoms, and the total number of threads T to be executed.
For this benchmark, we used a batch of 2, 000 sequences of work to be done.

% setup scheduler
:- dynamic qsize/1.
:- mutex_create(qlock).
qsize(0).

% manage the working queue
worker(DS, WO) :-
mutex_lock(qlock),
% get work from queue
qsize(I),
(I =< DS -> % thread got work W
% setup next work
retract(qsize(I)),
IL is I + WO, assert(qsize(IL)),
mutex_unlock(qlock),
% compute work W
compute(I, IL),
% get more work
worker(DS, WO)

; % no more work to be done
mutex_unlock(qlock)).

Fig. 7 The naive parallel scheduler

The second stage of the pipeline is the scheduler. Figure 7 shows the code
that implements the naive parallel scheduler used in the benchmark. It uses
a dynamic predicate qsize/1 to mark the number of the next sequence from
the initial set that is available to be used for the generation of atoms and
a standard lock named qlock to synchronize threads when they are getting
work. To get work, a thread T begins by gaining access to the lock, then it
reads the next sequence I stored in qsize/1 and, if there is work to be done, T
prepares the queue with the next available sequence IL, releases the lock and
goes to executing work. Otherwise, there is no more work to be done, thus T
keeps qsize/1 in the same state, releases the lock, and proceeds to the thread
join predicate.

The third and final stage of the pipeline implements the process of gener-
ating atoms to be inserted and stored in the atom table. Figure 8 shows both
compute/2 and combine_atoms/2 predicates. For each batch of work, a thread
uses the compute/2 predicate to get the corresponding sequences from the
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% compute the sequences
compute(I, I) :- !.
compute(I, IL) :-
atom_seq(I, AS),
(combine_atoms(AS, _), fail; true),
I1 is I + 1,
compute(I1, IL).

% generation of atoms
combine_atoms(AS, R) :-
atom_concat(A1, A2, AS),
atom_concat(A2, A1, R).

Fig. 8 Generation of the atoms to be inserted in the atom table

initial set, and, for each sequence, it calls the combine_atoms/2 predicate to gen-
erate all possible combination of atoms from the sequence. Each generated
atom is then automatically inserted by the Prolog system in the atom table.

4.2 Results

The results shown in the following figures were obtained by taking the mean
of 10 benchmark runs. Figure 9 shows the speedup obtained by YAP with
the atom table replaced by the LFHT data structure against YAP’s original
implementation for every combination of 1 to 24 threads. The results show
that, on average, we can achieve a minimum speedup of 1.8 with a single
thread and a maximum speedup around 3.4 with 23 threads. The speedup for
24 threads is slightly worse than for 23 threads because, as the LFHT version
has better CPU utilization, it is more affected by background/operation system
processes when all cores are in use.

These results show that we can achieve not only better overall perfor-
mance, but also much better scalability. In particular, the readers-writer locks
present in the original atom table can be a significant bottleneck that the LFHT
data structure is able to avoid.

To put the results in perspective, we also compared the YAP results with
SWI-Prolog. Figure 10 shows the throughput of sequences that are com-
puted per second in both the YAP (original and LFHT-based atom tables)
and SWI-Prolog implementations. As one can observe, the original YAP im-
plementation already provides much better performance and scalability than
SWI-Prolog, and the LFHT-based atom table is able to provide a considerable
improvement on top of it. For example, with 24 threads, our LFHT-based
implementation is able to achieve 24.6 times the throughput of SWI-Prolog.
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Fig. 10 Throughput for YAP and SWI-Prolog

5 Conclusions and Future Work

We have presented an approach to replace the original atom table implemen-
tation in the YAP system with a lock-free hash-based data structure, named
LFHT. Our main motivation was to refine the previous atom table design in
order to be as effective as possible in the concurrent search and insert opera-
tions over the atom table. We discussed the relevant details of the approach
and described the main algorithms. We based our discussion on YAP’s con-
current atom table data structure, but our approach can be applied to other
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Prolog systems or to other generic systems that need to use similar concurrent
atom tables.

A key design decision in our approach was to adapt the LFHT design to
work as a fully standalone C application, allowing the hash function to be
defined by the user, and implementing a new iterate operator. This facilitated
the migration from the old lock-based atom table to the new lock-free atom
table, where threads do not block when accessing the data structure. Experi-
mental results showed that our approach can effectively reduce the execution
time and scale better than the previous design.

As future work, we plan to test our approach on real world Prolog appli-
cations widely-used in the community, such as, the Aleph Machine Learning
system [22] and the ClioPatria Semantic Web system2.
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Abstract Complex algorithms and enormous data sets require parallel execu-
tion of programs to attain results in a reasonable amount of time. Both aspects 
are combined in the domain of three-dimensional stencil operations, for exam-
ple, computational fluid dynamics. This work contributes to the research on 
high-level parallel programming by discussing the generalizable implementa-
tion of a three-dimensional stencil skeleton that works in heterogeneous com-
puting environments. Two exemplary programs, a gas simulation with the 
Lattice Boltzmann method, and a mean blur, are executed in a multi-node 
multi-graphics processing units (GPUs) environment, proving the runtime im-
provements in heterogeneous computing environments.

Keywords Skeleton Programming, Three-Dimensional Stencil Operations

1 Introduction

The field of High Performance Computing (HPC) is growing as algorithms 
become more complex and more data needs to be processed. Evaluating mas-
sive datasets, therefore, requires writing efficient parallel programs. Most HPC 
environments have multiple nodes equipped with multiple central processing 
units (CPUs) and GPUs. Creating programs that combine multiple nodes 
and accelerators requires knowledge of low-level frameworks such as imple-
mentations of the Message Passing Interface (MPI) MPI, OpenMP OpenMP, 
and CUDA CUDA. Moreover, writing a parallel program is error-prone and 
tedious, e.g., out of memory errors and invalid memory accesses are trouble-
some to identify even for skilled programmers. Additionally, choosing memory
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spaces, distributing data, and assigning tasks to threads are design decisions
that significantly impact performance but require experience, which scientists
usually lack.

Since experts in this field are hard to find, high-level frameworks are of-
ten used. Those frameworks commonly abstract from the distribution of data,
provide portable code for different hardware architectures, are adjustable to
distinct accelerators, and require less maintenance for the end user. In 1989,
Cole introduced algorithmic skeletons enclosing reoccurring parallel and dis-
tributed computing patterns as one of the most common approaches to ab-
stract from low-level details [4]. Multiple libraries [5,3], general frameworks [6,
2], and domain-specific languages (DSLs)[14] use the concept.

The paper contributes to the ongoing work by focusing on a particularly
arduous operation, namely the three-dimensional stencil operation. Stencil op-
erations calculate elements depending on neighboring elements within the data
structure and therefore require communication between the computational
units used. Those operations are essential for, e.g., computational fluid dy-
namics of gas or airflow. Efficiently updating data in a generalized way and
dealing with three-dimensional data structures are currently not solved in
high-level approaches.

This paper firstly lists the related work, focusing on high-level approaches
abstracting from problem-specific details (Section 2). Section 3 outlines the
library used (Muesli), while Section 4 explains the additional implementation
of the three-dimensional skeleton and the examples used to measure the run-
time. The work is evaluated in Section 5, discussing our runtime experiments
on multiple hardware set-ups. Lastly, Section 6 summarizes our work.

2 Related Work

Ongoing work discussing three-dimensional stencil operations is twofold. On
the one hand, generic high-level frameworks targeting the three-dimensional
stencils have the advantage of parallelizing pre- and postprocessing steps, as
they offer a variety of operations/skeletons. On the other hand, specialized
frameworks already contain implementations for processing stencil calculations
but are often inefficient as they focus on the algorithm and not on paralleliza-
tion. Most related in the area of high-level skeleton programming frameworks,
SkePU3 targets multi-node and multi-GPU environments for most skeletons
in combination with StarPU. However, for stencil operations (MapOverlap),
the data exchange between the programs is missing for multi-node programs
[6].

FastFlow added GPU support but focuses on communication skeletons and
misses a comparable stencil operation [2,?]. Lift handles n-dimensional stencils
on single GPUs [8]. SkelCL implements a MapOverlap skeleton for multiple
GPUs [13]. Specialized libraries such as Palabos for the Lattice Boltzmann
methods (LBMs) [11], or publications discussing a single method, e.g., the
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Helmholtz equation [7] focus on the algorithm and do not include accelerators
like GPUs.

This work extends the mentioned work, as the presented stencil skeleton
is generalizable for multiple applications, allows pre and postprocessing steps,
and runs on multiple nodes and GPUs. This is proven by implementing a
version of a LBM and a three-dimensional mean blur.

3 The Muenster Skeleton Library Muesli

Nowadays, most skeletons frameworks are implemented in C/C++ [6,2,3,12,
1,9], as it offers interoperability with multiple parallel frameworks such as
OpenMP, MPI, CUDA, and OpenCL and is exceptionally performant.

The used library is called Muenster Skeleton Library (Muesli) [5]. Muesli
provides an object-oriented approach that offers one, two, and three-dimensional
data structures (DA, DM, DC) with skeletons as member functions. The sup-
ported skeletons are, for example, multiple versions of Map and Zip (index and
inplace variants), Fold, Gather, and, as discussed in this work MapStencil. In-
ternally, MPI, OpenMP, and CUDA are used, which enables simultaneous
parallelism on multiple nodes, CPUs, and GPUs. The library can be included
with a simple include statement #include<muesli.h>. For writing a parallel
program, Muesli provides abstract methods to state the number of processes
and GPUs used. Apart from that, Muesli abstracts from parallel programming
details by internally distributing the data structures on the available compu-
tational units, choosing the number of threads started on the corresponding
low-level framework, and copying data to the correct memory spaces. This ab-
straction also reduces errors commonly made by inexperienced programmers,
such as race conditions and inefficient data distribution.

1 class Sum : public Functor2 <int , int , int >{

2 public: MSL_USERFUNC int operator () (int x, int y)

3 const {return x+y;}};

4 Sum sum;

5 auto product = [] (int i, int j) {return i*j;};

6 DA<int > a(3 ,2); // delivers: {2 ,2 ,2}

7 DA<int > b = a.mapIndex(sum); // delivers: {2 ,3 ,4}

8 a.zipInPlace(b,product ); // delivers: {4 ,6 ,8}

9 int scalarproduct = a.fold(sum); // delivers: 18

Listing 1: Scalar product in Muesli.

Listing 1 shows a simple program calculating the Scalar product of the dis-
tributed arrays a and b in Muesli. In line 6, a distributed array of size three
with a default value of 2 is created. In the skeleton calls in lines 7-9, it can be
seen that skeletons have a user function as an argument which can either be a
C++ function or a C++ functor. For the index variant of map, Muesli applies
the argument function of map to each element of the data structure (here a
distributed array (DA)) and its index (line 7). For the zip skeleton, the second
required data structure is passed as an argument. Lastly, lines 7+9 show that
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the same function can be used in different contexts, firstly for calculating the
sum of the index and the value and secondly as a reduction operator.

4 Three-Dimensional Stencil Operations

Fig. 1: Exemplary
two-dimensional
stencil operation.

Stencil operations are map operations that addi-
tionally require reading the surrounding elements of
each considered element. Figure 1 displays a two-
dimensional stencil with a radius of one. The peculiar-
ity regarding stencil operations on multiple nodes and
accelerators is that each execution of the stencil oper-
ation requires updating elements that are shared be-
tween computational units. As communication of up-
dated elements requires synchronization between the
computational nodes, it decreases the opportunity for
executing tasks in parallel within the program. Muesli
abstracts from all communication between the compu-
tational nodes with a MapStencil skeleton.

4.1 Using the MapStencil Skeleton

The usage of the 3-dimensional mapStencil skeleton
for the end-user is shown in Listing 2. Firstly, a function to be executed on each
element is defined (l. 1-10). Merely functors of type DCMapStencilFunctor

can be used with the mapStencil skeleton. Therefore, the first argument of
the functor has to be of type PLCube (PaddedLocalCube), and the subsequent
arguments must be integers for indexing the data structure. The class PLCube
most importantly offers a getter-function taking three index arguments,
relieving the end-user from index calculations (l. 8). The presented functor
calculates the sum of all elements with a radius of two. It divides the sum by
the number of total elements, therefore calculating a mean filter. This functor
can be applied to a distributed cube by calling the mapStencil skeleton as a
member function (l. 14). The skeleton takes the functor as a template argument
and requires a distributed cube of the same dimension with the current data
1, the radius of the stencil2 and the neutral value for border elements.

1 template <size_t radius >

2 MSL_USERFUNC float update(const PLCube <float > &plCube ,

3 int x, int y, int z) {

4 float res = 0;

1 A variant of the skeleton which immediately overwrites old values by new values is,
however, possible and could be applied, for instance, for implementing the Gauß-Seidel
method for solving systems of linear equations. However, it restricts the order in which
computations can take place resulting in wave front parallelism.

2 Other stencil shapes such as rectangular or irregular stencils can be handled by using
the smallest surrounding cube, although this may introduce some overhead.
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5 for (int mx = x - radius; mx <= x + radius; mx++) {

6 for (int my = y - radius; my <= y + radius; my++) {

7 for (int mz = z - radius; mz <= z + radius; mz++) {

8 res += plCube(mx, my , mz);}}}

9 return res/( radius*radius*radius );

10 }

11 main () {

12 ...

13 int stencilradius = 2;

14 dcp1 ->mapStencil <update <2>>(*dcp2 , stencilradius , 0);

15 ...

16 }

Listing 2: Exemplary functor for the mapStencil skeleton.

4.2 Implementation of the MapStencil Skeleton

Adding the MapStencil skeleton to the existing distributed cube (DC) class
requires adding two additional member fields: a vector of PLCubes and a (max-
imal) supported stencil radius. As previously mentioned, the PLCubes class
allows the end-user to abstract from the indexing of the data structure. To
make access to the different memory spaces efficient, each computational unit
has a separate PLCube storing merely the elements needed to calculate the
assigned elements. This design choice makes the class flexible to be used for
CPUs and for GPUs. It contains the following attributes to provide a light,
minimal design:

– int width, height, depth - the three dimensions of the data structure,

– int stencilRadius radius of the stencil required to calculate the overlap-
ping elements,

– int neutralValue used when the index is outside of the data structure,

– T* data, T* topPadding, T* bottomPadding CPU or GPU pointer for
current data,

– four integers to save global indexes for the start and end of main and
padding data areas.

Most importantly, the getter-function is implemented, taking three integers
as arguments and returning the suitable value. This is either the neutral value
or the corresponding element from the CPU or GPU memory.

Assuming GPUs are used as accelerators, the skeleton updates the current
data structure in case the data is not up to date (Listing 3, l.6). Afterwards,
it synchronizes the PLCubes inside one node, and the data between multiple
nodes (l.7, l.9). Foreach GPU used, the mapStencilKernelDC kernel is called
executing the functor on the appropriate part of the overall data structure. In
any other case (multiple nodes and CPU), it is only necessary to synchronize
the nodes (l. 21) and call the functor with the corresponding arguments (l.
29).
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1 template <typename T>

2 template <msl:: DCMapStencilFunctor <T> f>

3 void msl::DC<T>:: mapStencil(msl::DC<T> &result ,

4 size_t stencilSize , T neutralValue) {

5 #ifdef __CUDACC__

6 this ->updateDevice ();

7 syncPLCubes(stencilSize , neutralValue );

8 msl:: syncStreams ();

9 syncPLCubesMPI(stencilSize );

10 for (int i = 0; i < this ->ng; i++) {

11 cudaSetDevice(i);

12 dim3 dimBlock(muesli :: threads_per_block );

13 dim3 dimGrid ((this ->plans[i].size + dimBlock.x - 1)

14 / dimBlock.x);

15 detail :: mapStencilKernelDC <T, f><<<dimGrid , dimBlock ,

16 0, muesli :: streams[i]>>>(result.plans[i].d_Data ,

17 this ->plCubes[i], result.plans[i].size);

18 }

19 msl:: syncStreams ();

20 result.setCpuMemoryInSync(false);

21 #else

22 syncPLCubesMPI(stencilSize );

23 #ifdef _OPENMP

24 #pragma omp parallel for

25 #endif

26 for (int k = 0; k < this ->nLocal; k++) {

27 int l = (k + this ->firstIndex) / (ncol*nrow);

28 int j = ((k + this ->firstIndex) - l*(ncol*nrow)) / ncol;

29 int i = (k + this ->firstIndex) % ncol;

30 result.localPartition[k] = f(this ->plCubes [0], i, j, l);

31 }

32 #endif

33 }

Listing 3: Implementation of the mapStencil skeleton.

4.3 Example Applications for Three-Dimensional Stencil Operations

Two examples were used to evaluate our implementation: an implementation
of the Lattice Boltzmann Method (LBM) and a mean blur. The exemplary
user function of the mean blur was already shown in Listing 2.

The LBM is used for fluid simulations e.g. the distribution of gas. It dis-
tinguishes between the collision and the streaming step, which alternate in
continuous simulations [10, p. 61ff.]. In the streaming step, gas particles move
from one cell to another. The fluid flow caused by the colliding particles is
calculated in the collision step. The distribution function fi(x, t) calculates
for a cell x and a timestamp t how many particles move in the next step to
neighbor i. Index 0 corresponds to the cell itself. f∗

i defines the distribution
after the collision of the particles (see formula (2)). ∆t is the time period to
be simulated.

fi(x+ ci∆t, t+∆t) := f∗
i (x, t) (1)
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For the collision steps, the Bhatnagar-Gross-Krook-operator is used. τ is
a constant defining the convergence of the simulation. Thus τ influences the
viscosity of the gas.

f∗
i (x, t) := fi(x, t)−

∆t

τ
(fi(x, t)− f eq

i (x, t)) . (2)

The equilibrium state is calculated by

f eq
i (x, t) := wiρ

(
1 +

u · ci
c2s

+
u · ci
2c4s

+
u · u
2c2s

)
, (3)

where wi are the weights of the chosen grid and ci is the position of the
neighbor cells relative to the main cell. The constant number cs is the sound
velocity of the model. The mass density ρ and the puls density u are defined
by

ρ(x, t) =
∑
i

fi(x, t), ρu(x, t) :=
∑
i

cifi(x, t). (4)

For the implementation of the LBM, a D3Q19-Grid was used, D being the
number of dimensions and Q the number of neighbors. Both steps (collision and
streaming) are combined in one mapStencil call. Noteworthy, the implemen-
tation has to consider that single cells can be marked as blocked, simulating
objects which are barriers to the flow of gas or as distributing constantly gas.
Therefore, special cells are marked with Not a Number values (Listing 5 l. 5-7).
To simulate this behavior without requiring additional storage, the handling of
the floating point numbers is extended. According to the IEEE-754 Standard,
each floating point number that has a maximal exponent with a mantissa that
is not equal to zero is considered Not a Number. The most significant bit of
the mantissa of f0 is set so that the number is definitely understood as NaN.
The remaining bits of the mantissa can then be used freely to store other data.
In the code, bit masks and a struct with bit-fields are defined in the code to
access this information as easily as possible (Listing 4).

1 const int FLAG_OBSTACLE = 1 << 0;

2 const int FLAG_KEEP_VELOCITY = 1 << 1;

3 typedef struct {

4 unsigned int mantissa : 23;

5 unsigned int exponent : 8;

6 unsigned int sign : 1;

7 } floatparts ;

Listing 4: Handling of barriers and streaming cells.

The data stored for each cell is an array<float, Q>. Q is a constant
number for the neighbor cells and the cell itself (l. 19). This type is abbreviated
in the following listing with cell_t. Moreover, it is abstracted from the three-
dimensional vector operations (l. 28, 29, 31, 34). The user function starts by
transforming the current value of the cell into the single float parts (l. 4). In
case it is a cell that distributes gas (FLAG_KEEP_VELOCITY), the cell remains
without changes (l. 5-7). For all neighbor cells, the current amount of particles
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is read (l. 10-12). In the collision step, all cells which are obstacles reverse
the airflow (l. 16-23). All other cells calculate the particles streaming from the
next cells (l.27-34).

1 MSL_USERFUNC cell_t update(const PLCube <cell_t > &plCube , int x,

2 int y, int z) {

3 cell_t cell = plCube(x, y, z);

4 auto* parts = (floatparts *) &cell [0];

5 if (parts ->exponent == 255 && parts ->mantissa

6 & FLAG_KEEP_VELOCITY) {

7 return cell;

8 }

9 // Streaming.

10 for (int i = 1; i < Q; i++) {

11 cell[i] = plCube(x + (int) offsets[i].x,

12 y + (int) offsets[i].y, z + (int) offsets[i].z)[i];

13 }

14
15 // Collision.

16 if (parts ->exponent == 255 && parts ->mantissa & FLAG_OBSTACLE) {

17 if (parts ->mantissa & FLAG_OBSTACLE) {

18 cell_t cell2 = cell;

19 for (size_t i = 1; i < Q; i++) {

20 cell[i] = cell2[opposite[i]];

21 }

22 }

23 return cell;

24 }

25 float p = 0;

26 vec3f vp {0, 0, 0};

27 for (size_t i = 0; i < Q; i++) {

28 p += cell[i];

29 vp += offsets[i] * cellwidth * cell[i];

30 }

31 vec3f v = p == 0 ? vp : vp * (1 / p);

32
33 for (size_t i = 0; i < Q; i++) {

34 cell[i] = cell[i] + deltaT / tau * (feq(i, p, v)

35 - cell[i]);

36 }

37 return cell;

38 }

Listing 5: Implementation of an exemplary LBM user function.

The second example used is a mean filter commonly used for smoothing
images. Aside from images, filters are commonly used to pre-process data
to reduce noise. This might also be applied to signal processing and other
application contexts. This example has the advantage that the stencil size (i.e.
radius) can be varied, as depending on the context different stencil sizes are
reasonable. Moreover, this program does not require conditional statements
that potentially slow down the program.
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5 Evaluation

Our approach requires measuring the speedup achieved. For this purpose, the
presented exemplary programs, a mean filter and an LBM implementation,
are executed on the HPC machine Palma II3. Table 1 lists the hardware spec-
ification of the partitions used. Those are two GPU-partitions and two CPU-
partitions. To provide meaningful results, all parallel programs are executed
ten times.

per node per computational unit

Identifier Nodes GPUs max. CPU-threads mem. (GB) cores GPU/CPU-type

normal 136 - 36 92 18 Skylake (Gold 6140)
zen2 12 - 128 496 64 Zen2 (EPYC 7742)
gpu2080 5 8 32 11 4352 GeForce RTX 2080 Ti
gpuhgx 2 8 32 80 6912 Nvidia A100 SXM

Table 1: Overview of used hardware.

For testing CPU-parallelization, the zen2 partition is used, which is equipped
with 12 nodes, each with one Zen2 (EPYC 7742) CPU with 64 cores. For run-
ning the sequential version, a single Skylake (Gold 6140) CPU is used (nor-
mal). It is not possible to run sequential programs on the zen2 partition as
all sequential programs have to run on the normal partition.

For the GPU-programs, the gpu2080 and gpuhgx partitions are used. The
gpu2080 partition has five nodes, each with 8 GeForce RTX 2080 Ti GPUs.
The gpuhgx partition is equipped with two nodes, each with 8 A100 SXM
GPUs. These partitions, most importantly, vary in the maximum memory
and the number of cores. The gpu2080 partition has more nodes. However,
each GPU has 11GB VRAM and 4352 cores allowing less parallelization than
more powerful GPUs (such as the A100) can provide. In contrast, the gpuhgx
partition has 80GB VRAM per GPU, allowing bigger data structures to be
processed, and has more cores (6912) to speed up the program. Using different
GPUs also contributes to proving the universal applicability of the MapStencil
skeleton in Muesli.

Next to a sequential program, the Muesli-programs solving the LBM are
compared to a native implementation. The native program is written to the
best of our knowledge.

5.1 LBM

The LBM is used to simulate fluid flow in the three-dimensional space. Conse-
quently, it is reasonable to run an experiment that does not only execute the
mapStencil skeleton one time but has multiple iterations simulating multiple

3 https://confluence.uni-muenster.de/pages/viewpage.action?pageId=27755336
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dispersion steps. 200 iterations were chosen for every experiment to compare
run times between different data sizes.

Data sizes were chosen to completely utilize the available storage. For the
LBM, each cell requires 76 bytes, as each cell stores 19 32-bit floating point
numbers. For the calculation, one data structure to read and one to write is
necessary. The largest theoretically possible data structure size for a given
amount of memory can be simply calculated by:

d(gb) :=
3

√
gb · 230

2 · 76
This results in a maximum side length of 426 for the RTX 2080 Ti GPU and

826 for the A100 SXM. Although the CPU partition would support bigger data
structures, the data size was not increased to the maximum as the speedup
converged, and the runtime of the sequential program became unreasonable
high (approximately 10 hours for calculating the LBM simulation for a data
size of 9603).

Table 2 shows that for the CPU-zen2 partition, a speedup of 116 can be
reached with a single CPU.

Data size Sequential 1 Node Speedup 4 Nodes Speedup 8 Nodes Speedup

1203 56.00 1.30 42.96 0.49 114.58 0.31 180.16
4403 2994.47 30.35 98.66 16.68 179.53 8.36 358.31
8003 18572.90 173.88 106.81 86.00 215.96 45.59 407.36
9603 34880.80 300.44 116.10 149.23 233.74 77.11 452.37

Table 2: Runtimes (seconds) and speedups for the parallel implementation of
the LBM gas simulation for CPU programs on the zen2 partition.

As the CPU has 64 cores, this is caused by multithreading. In total, in the
optimal case, 128 threads are started on the 64 cores available. In this scenario,
it should be considered that the calculations are easy to execute in parallel as
all data resides on the memory of the single CPU, accessible for all threads.
Using four nodes requires communicating the border values, thus requiring
operations that cannot be executed in parallel. Although more elements need
to be communicated with increasing data sizes, the share of operations that
require communication is decreasing, thus allowing more parallelism. This can
be seen as the best speedup that can be achieved with four nodes for the
biggest tested data size (9603). Eight nodes achieve a speedup of 452.

In contrast, the GeForce RTX 2080 Ti achieves a speedup of 88 with a single
GPU. The maximum speed up which can be achieved by GPUs depends on the
GPU used. The GeForce RTX 2080 Ti has 68 streaming multiprocessors (SMs),
each capable of executing 64 threads in parallel (4352 in total). Although more
threads can be scheduled, the hardware does not allow executing them in
parallel. Multiple factors limit the possible speedup. Most importantly, threads
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with diverging execution branches cannot be executed in parallel, limiting the
64 threads executed in parallel.

The A100 has 108 SMs, allowing more threads to be executed in parallel.
The maximum speedup achieved is roughly 353.

Fig. 2: Runtime comparison of a multi-GPU Muesli program and native
(CUDA) implementation of the LBM on a single-node of the gpu2080 par-
tition.

In order to check whether a low-level program is significantly faster, a
native implementation was programmed to be compared against the Muesli
program. As can be seen in Figure 2, the implementations are close to each
other. In contrast to the native implementation, Muesli has a slight overhead.
However, as it is very small, the differences are expected and neglectable.
Runtimes for bigger data structures are not included for one GPU and two
GPUs to increase the readability of the graph. Also worth mentioning is that
the native implementation has 544 lines of code without implementing MPI
inter-node communication. In contrast, the Muesli program has 246 lines of
code, allowing multiple node programs.

Regarding the scalability on multiple GPUs, a speedup of 1.7 compared
to a single GPU version can be reached for two GPUs, and for four GPUs,
a speedup of 2.75 is achieved. To ensure that the communication causes the
overhead, the time for the update function was measured separately. Without
communication, a speedup of 1.94 and 3.88 was achieved, which can be at-
tributed to the synchronization of streams. Although the speedup is limited
by the communication operations, using multiple GPUs also has the advantage
of being able to process bigger data structures, since there is more memory
available. The total speedup can be seen in Table 3.

Considering multiple levels of parallelism, the program can also run on
multiple nodes equipped with multiple GPUs. Runtimes are depicted in Figure
3 and Table 4. Most eye-catching, the runtimes for four nodes and four GPUs
are not linear but show a switching pattern. This is caused by not splitting the
data structure into complete slices but into incomplete slices (e.g., 640 has 40
slices per GPU while 680 has 42.5). The program can handle this. However,
the communicational effort rises.
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Data size Sequential 1 GPU Speedup 2 GPUs Speedup 4 GPUs Speedup 8 GPUs Speedup

4003 2243.63 25.23 88.93 14.20 158.06 9.16 244.92 9.06 247.51
5203 4971.15 - - 30.76 161.62 18.74 265.32 16.65 298.53
6403 9261.54 - - - - 33.99 272.48 28.78 321.75
8003 18572.9 - - - - - - 50.68 366.45

Table 3: Speedup for the parallel implementation of the LBM gas simulation
on the gpu2080 partition.

Data size GPUs 1 N 1 N-Com 4 Ns 4 Ns -Com1 Speedup Speedup

2803 1 8.59 8.59 2.74 2.16 3.14 3.97
2803 4 3.58 2.23 2.06 0.39 1.73 5.74

4003 1 25.23 25.23 7.21 6.32 3.50 3.99
4003 4 9.16 6.50 5.14 1.70 1.78 3.82

Table 4: Speedup for the parallel implementation of the LBM gas simulation
for multiple nodes on the gpu2080 partition.

Fig. 3: Runtimes of the LBM Muesli program on multiple nodes and multiple
GPUs on the gpu2080 partition.

5.2 Mean Filter

Using the LBM implementation as an exemplary program has multiple down-
sides. Firstly, one factor which has a major influence on the generalizability of
the skeleton stays constant - namely, the stencil radius. This factor influences
the number of elements that need to be communicated between the compu-

Runtime (s) Speedup

Data size Sequential 4 Nodes 8 Nodes 4 Nodes 8 Nodes

120 86.85 0.64 0.46 136.68 190.30
280 1135.88 6.82 3.95 166.43 287.84
400 3333.38 19.91 10.23 167.43 325.97
560 9188.60 49.91 26.40 184.00 348.08

Table 5: Runtimes in seconds and speedups of CPU program for the mean
filter with stencil radius 2 on the gpu2080 partition.
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tational nodes. Therefore, it is essential to vary this factor to analyze the
performance of the skeleton. Moreover, the implementation of the LBM has
multiple conditional statements like branch operations slowing down the pos-
sible parallelism. In contrast, the mean blur does not contain any if-branches.

Firstly, the CPU parallelism is discussed. Table 5 lists the speedup for
one, four, and eight nodes compared to a sequential program. Noteworthy, the
optimal time is not achieved by using 128 threads but by using 64 threads.
As the instructions are easily executed in parallel, scheduling threads that are
executed when other threads are idle is no longer beneficial. For four nodes,
a speedup of 184 can be reached. As can be seen, for rising data sizes, the
speedup improves as fewer communication operations are required. The same
applies to programs using eight nodes reaching a speedup of 348.

Stencil Data size Runtime Speedup Runtime Speedup 4 GPUs Speedup
radius 1 GPU Seq/1 GPU 4 GPU 1 / 4 GPUs -Com1 1/4-Com

2
1203 0.16 542.83 0.07 2.16 0.05 3.51
4003 4.46 747.39 1.44 3.09 1.15 3.89
8003 43.65 - 12.14 3.60 10.95 3.99

10
1203 8.24 560.50 2.64 3.12 2.50 3.29
2803 131.51 508.92 35.98 3.66 35.20 3.74
8003 3953.38 - 1022.75 3.87 1016.71 3.89

Table 6: Speedup for the parallel implementation of the mean blur for a single
node of the gpu2080 partition.

Stencil Data size Runtime Speedup Runtime Speedup 1 GPU 4 GPUs Speed-up
radius 1 GPU Seq/1 GPU 4 GPU 1 / 4 GPUs -Com1 -Com1 1/4-Com

2
1203 0.15 579.02 0.08 2.00 0.09 0.03 3.08
4003 2.66 1253.15 1.12 2.38 2.31 0.65 3.53
8003 24.88 - 7.41 3.36 22.09 5.81 3.80

10
1203 5.48 842.20 1.87 2.94 4.02 1.50 2.69
2803 75.39 887.78 20.41 3.69 65.68 18.68 3.52
8003 2149.16 - 541.64 3.97 2009.69 510.79 3.93

Table 7: Speedup for the parallel implementation of the mean blur for two
nodes of the gpu2080 partition.

Secondly, the speedup for the GeForce RTX 2080 Ti GPUs is measured.
The program has less if-branches, so it is more appropriate for GPUs. The
speedup for a single GeForce RTX 2080 Ti GPUs for a data size of 4003 is
747, significantly better than for the LBM implementation. Table 6 and 7
list the runtimes and speedups for a small stencil radius of two (reading 125
elements per calculation) for one and two nodes with each one or four GPUs.
Including communication operations, a speedup of 3.6 is reached. To ensure
that this is really caused by the communication operations, the runtime spent
on calculation is measured separately. The speedup depicted in the last column
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Fig. 4: Runtimes of the Blur Muesli program on the gpu2080 partition.

reaches 3.99, which is close to an optimum of 4. As communication operations
require synchronization, the optimal speedup is hardly achievable. In contrast,
scaling across nodes improves the speedup for a single GPU from 747 to 1253.
Comparing the runtimes without communication, 43.65 seconds are nearly
doubled from 24.88. Scaling from one node to two nodes is more efficient, as
merely one overlapping data region needs to be communicated. The speedup
for four GPUs behaves similarly to the above-explained behavior.

Regarding bigger stencil radiuses, the runtimes for a stencil radius of 10
are listed. This requires reading 9261 elements per calculation. This extreme
example is chosen to observe the runtime and speedup when not all elements
can be loaded in caches.

Besides changing the hardware, the stencil radius was adjusted to discuss
the impact on the performance. With an increasing stencil radius, the calcu-
lation of one element requires more read and write operations. For a stencil
radius of two, the sum of 125 elements is calculated, and self-explanatory,
this grows cubic. Figure 4 depicts the influence on the runtime. Although the
number of elements processed grows cubic, the runtime does not grow cubic.

Stencil Data size 1 GPU 4 GPUs 4 GPUs Speedup Speedup 8 GPUs 8 GPUs Speedup Speedup
radius -Com1 -Com1

8

1203 4.54 1.47 1.35 3.09 3.35 1.04 0.79 4.37 5.74
2803 60.58 16.44 15.85 3.68 3.82 9.71 8.47 6.24 7.15
4003 192.61 51.59 50.34 3.73 3.83 29.52 26.96 6.52 7.14
5603 563.20 148.68 146.41 3.79 3.85 83.38 78.58 6.75 7.17

12

1203 13.59 4.20 4.03 3.23 3.37 2.53 2.17 5.38 6.27
2803 252.54 69.24 68.32 3.65 3.70 37.92 35.97 6.66 7.02
4003 836.59 222.12 220.38 3.77 3.80 118.89 115.15 7.04 7.27
5603 2464.76 643.33 640.16 3.83 3.85 338.46 331.65 7.28 7.43

Table 8: Speedup for the parallel implementation of the mean blur for multiple
GPUs on the gpu2080 partition.

Moreover, it ascertains that the speedup improves with a growing share
of calculation operations. This is detailed listed in Table 8. Similar to the
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Fig. 5: Runtimes of the Blur Muesli program on the gpu2080 partitions with
similar hardware.

CPU program, the speedup with and without communication is measured. For
bigger stencil radiuses, the speedup comes closer to the optimum. Although
more elements need to be communicated between the nodes, the intensity of
the calculation requires more time which dominates the total runtime. For a
stencil radius of 12 (processing 15.625 elements per thread). The operations
are still very performant as elements are automatically written in GPU caches,
allowing efficient data access. As multiple combinations of hardware settings
are tested, it is interesting to compare having the same number of GPUs
distributed on a different number of nodes. For example, having one node with
two GPUs, in contrast to having two nodes with one GPU, has the downside of
having one less CPU. However, it has the advantage of allowing GPU to GPU
communication. Two comparisons are displayed in Figure 5. The first figure
compares a one-node eight GPUs program to a two nodes four GPUs program
for different stencil radiuses. As can be clearly seen, the two nodes program
is faster. This is caused by parallelizing communication as some operations
are executed by the CPU instead of communicating between only GPUs. In
contrast, the second figure shows that when a single node program with two
GPUs is compared to a two nodes program with each one GPU. The single
node program is slightly faster as a communication operation between GPUs
is faster than an MPI communication between two nodes.

Stencil Data size 1 GPU 4 GPUs Speedup 8 GPUs Speedup 4 GPUs Speedup 8 GPUs Speedup
radius -Com1 -Com1

2 4003 2.97 0.91 3.28 1.14 2.61 0.75 3.95 0.38 7.77
8003 24.00 6.57 3.65 4.64 5.18 6.02 3.99 3.03 7.92

8 4003 103.60 27.16 3.81 15.19 6.82 26.56 3.90 13.35 7.76
8003 1016.62 258.47 3.93 134.69 7.55 256.47 3.96 129.55 7.85

Table 9: Runtimes in seconds and speedups for a mean filter on the gpuhgx
partition

The program was also tested on the A100 partition allowing even bigger
data sizes to be processed by a single GPU. In contrast to a single GeForce
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RTX 2080 Ti GPUs (Speedup 747), the A100 has a speedup of 1122.34 for a
data size of 4003 elements, and 3680.54 for four GPUs (2309.08). According to
the previous approach, the runtime was measured with and without commu-
nication (Table 9). Even with the communication, the speedup is close to the
optimum. For four GPUs, a speedup of 3.65 and 3.93 can be reached four 4003

and 8003 elements. For eight GPUs, a speedup of 5.18 and 7.55 is reached.

6 Conclusion

We have presented the implementation and experimental evaluation of a three-
dimensional MapStencil skeleton. The implementation was tested with two
example programs: 1) an LBM implementation and 2) a mean filter. The two
examples complement each other for different application contexts. The LBM
has a rather complex function, with a constant stencil radius, while the mean
blur has a simple user function, and the stencil radius can be varied. Both
examples were tested in complex hardware environments equipped with mul-
tiple nodes, CPU cores, and accelerators. For the LBM, a speedup of 116 for
one node and 452 for four nodes can be reached, confirming that for complex
functions, the communication between nodes has only a minor influence on
the speedup. In contrast, using multiple GPUs for complex functions does not
provide the expected speedup. For a single GPU, merely a speedup of 88 can
be reached. This speedup scales for two GPUs (161), but as the communication
rises, the speedup does not scale according to the number of accelerators. Ab-
stracting from the communication, the program scales across multiple nodes.

In contrast, running the mean filter example shows that non-diverging
programs do not benefit from multithreading with CPUs, having a speedup of
180 for four nodes. In contrast, a GPU can reach a speedup of 747, benefit-
ing from warps of threads that can run the same instruction in parallel. The
communication between GPUs decreases the speedup from 7.7 to 5.4, taking
approximately 30% of the runtime. When increasing the stencil radius, the
speedup improves as the initialization of the communication and the required
synchronization is more time-consuming than increasing the stencil radius,
which is communicated. This finding is confirmed for two different types of
GPUs an A100 partition and a GeForce RTX 2080 Ti partition.

Overall it is shown that Stencil operations are especially relevant to be
included in high-level frameworks as the communication between nodes and
accelerators is highly complex, and the implementation is not feasible for inex-
perienced programmers. The speedup achieved proves that high-level frame-
works can provide the means to solve this problem.
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10. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.:
The Lattice Boltzmann Method: Principles and Practice. Graduate Texts in Physics.
Springer International Publishing AG, Cham (2016)

11. Latt, J., Malaspinas, O., Kontaxakis, D., Parmigiani, A., Lagrava, D., Brogi, F., Bel-
gacem, M.B., Thorimbert, Y., Leclaire, S., Li, S., Marson, F., Lemus, J., Kotsalos,
C., Conradin, R., Coreixas, C., Petkantchin, R., Raynaud, F., Beny, J., Chopard, B.:
Palabos: Parallel lattice boltzmann solver. Computers and Mathematics with Applica-
tions 81, 334–350 (2021). Development and Application of Open-source Software for
Problems with Numerical PDEs

12. Marques, R., Paulino, H., Alexandre, F., Medeiros, P.D.: Algorithmic skeleton frame-
work for the orchestration of gpu computations. In: F. Wolf, B. Mohr, D. an Mey (eds.)
Euro-Par 2013 Parallel Processing, pp. 874–885. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

13. Steuwer, M., Gorlatch, S.: Skelcl: a high-level extension of opencl for multi-gpu systems.
The Journal of Supercomputing 69(1) (2014)

14. Wrede, F., Rieger, C., Kuchen, H.: Generation of high-performance code based on a
domain-specific language for algorithmic skeletons. The Journal of Supercomputing
76(7), 5098–5116 (2020)



Symposium on High-Level Parallel Programming & Applications
HLPP 2023

Accelerating DNN Communications by Hierarchical
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Hector Buffière · Pierre Leca · Chong Li

Abstract High-level computing frameworks have been proposed to simplify
the deployment of deep learning models, including parallelizing the models on
a given machine. Meanwhile, modern parallel machines leverage different types
and levels of communication to interconnect devices in order to maximize the
computing power. We formalized data redistribution costs and proposed an
algorithm to efficiently schedule data redistribution on hierarchical parallel
machines in order to place more expensive communication between closer de-
vices to reduce communication cost. Our solution was implemented with the
MindSpore open-source framework, and tested on a large Natural Language
Processing neural network, where we observed significant speedups of up to
120% on end-to-end training time.

Keywords Parallel Programming, Cost Analysis, Hierarchical Communica-
tion, Distributed Learning, Performance Optimization.

1 Introduction

In recent years, the appearance of giant deep learning (DL) models [3,21,13]
leads the dramatically heavy demand for computation power. On one hand,
more and more tensor-oriented large-scale parallel computers have been de-
signed [11,12,6]. Parallel computers are often arranged in a hierarchical man-
ner, where the communication cost between two nodes depends on how close
the nodes are topologically, and also on the type of connection between the
nodes. For instance, a computing node like Huawei’s Atlas or Nvidia’s DGX
groups 8 accelerators (NPU or GPU, resp.), organized in a twisted-torus topol-
ogy, with 4 connections per device. Computing nodes are connected with each
other in a fat-tree topology.
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! Département d’Informatique de l’ENS, CNRS, PSL University, 45 rue d’Ulm, Paris, France
E-mail: hector.buffiere@ens.fr, pierre.leca@huawei.com, ch.l@huawei.com



112 Hector Buffière et al.

On the other hand, in the domain of parallel programming, different kinds
of high-level parallelisation techniques also emerged in order to reduce the ex-
ecution time of such Deep Neural Network (DNN) models. These techniques
were generalized into different Deep Learning parallelism paradigms, including
data parallelism [5] (in the context of DL, this refers to splitting batches into
mini-batches which are given to different devices) and operator-level model
parallelism [7] (splitting parameters into different devices). These two types
of parallel strategies can be again combined at the same time in a hybrid
strategy for parallelizing the same operator. Modern AI frameworks like Py-
Torch [14], TensorFlow [1] or MindSpore [16] exhibit a modular design, which
allows DNN programmers to define their networks as operator graphs acting
on tensors in a high-level manner. The modularity allows better portability, as
different parts of the framework can be independently modified and optimized
depending on e.g. the hardware or the type of network. The top-level module
is the python interface where DL engineers can concisely define various neu-
ral networks. One mid-level module of the framework can then automatically
split the computation depending on the number of devices used, and a second
one assigns each part of the workload to devices of the cluster and connects
them with necessary logical communications. The bottom-level ones use com-
munication libraries to write the final machine code. Our work belongs to the
second mid-level module and seeks to provide new optimizations orthogonally
to the already very successful parallel techniques mentioned above.

However, the choice of high-level strategies of parallelism is still a complex
problem. The number of possible strategies that can be chosen depends on the
number of operators and the number of devices. The best strategy for a given
operator also depends on the strategy of its neighbors when redistributions
are taken into account. To avoid increasing this complexity, strategies are of-
ten chosen with a simplified view of the implied redistributions. For example,
by not considering the precise low-level device assignment of tensor shards,
nor the precise redistribution operations that need to be performed. With DL
relying mainly on linear algebra operations that are inherently highly paral-
lelizable, and communication being much slower than computation, almost all
of the extra cost induced by distributed training comes from redistributions,
as showcased in [22]. As hybrid strategies are more commonly used nowadays
in order to find a balance between speed and memory requirement, this causes
more frequent and more common redistributions, amplifying the performance
issues caused by inefficient choices of redistributions.

In this paper, we formalize the redistribution costs among different par-
allel strategy configurations, and propose a novel algorithm for redistributing
tensor shards between two operators with different device assignments. The
key idea of this algorithm is to favor performing large data transfers between
devices with faster communication links and small data transfers between de-
vices with slower communication links. In this way, we exploit the properties
of the hierarchical nature of clusters.
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2 Partitioning of Deep Neural Networks

2.1 Computational graph

A DNN can be defined as a computational graph G = (V,E) where V is a set
of vertices, either operators, parameters, input or output nodes, and E is a
set of directed edges connecting vertices. A vertex v ∈ V is defined as a pair
(o, t) where o describes the type of the operator (Add, MatMul, ...) and t is
the shapes of the operator’s tensors, a pair of lists of tuples of integers, the
first one for each input tensor and the second one for each output tensor of
the operator (some might be empty, for example the input list if the node is
a parameter of the model). The above defines the basic semantics of a deep
learning model from a computation point of view.

2.2 Sharding

A computational graph can be executed in parallel without changing its DNN’s
behavior by partitioning its tensors on devices of a cluster. This way, the
operators are computed in parallel on devices with different tensor shards by
using the inherently sequential and layered nature of DNNs. We then focus on
the exchange of the data resulting of parallel computations when needed (if
the results need to be combined or if the data allocation changes).

The partitioning can be done by defining tensor layouts, which specify
how each tensor is split across devices. It will be performed in 3 passes: (i)
by assigning strategies to each operator, that specifies how to cut the tensors;
(ii) the Deep Learning framework performs the assignment of tensor shards
to devices; (iii) lastly the framework generates and inserts communication
primitives to reallocate tensor shards between different consecutive layouts, or
to synchronize data when needed by some operators (e.g. MatMul).

Sharding can be defined by a map S : V → Ṽ where each vertex of Ṽ
is now a triple S((o, t)) = (o, t, s). The strategy s is also a pair of list of
integers but specifying the sharding of each input and output tensors’ dimen-
sions in an integer number of splits. For instance, an input tensor of shape
tin = (16, 1024, 1024) could be assigned a strategy sin = J4, 1, 2K meaning
that the first tensor dimension would be split 4 times, the second would be
replicated and the last split twice. The tensors shards would then be of shapes
(4, 1024, 512), and be evenly spread into 4× 1× 2 = 8 partitions. Note that 8
partitions could be deployed on 8 but also on 16, on 32, ... devices. An example
of the distributed computation of an Add operator with two input tensors and
one output tensor is shown in Figure 1.

2.3 The challenge of distributed deployment

Most DL platforms use sharding strategies (jointly with hyperparameters or
automatic methods) as the unique way to define DNN partitioning, and details
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Fig. 1 Example of an Add operator computing c = a + b with input and output tensors
sharded 8 times with strategies J2, 4K. This computation can be run on N ≥ 8 devices, each
tensor shard being replicated N/8 times.

are hidden from the framework user. We argue that this is an oversimplifica-
tion, since the redistributions do not only depend on strategies but also on
the way the computation of operators on shards is split between devices of the
cluster. Moreover knowing how strategies translate into device assignments is
crucial to get an idea of the communication cost of redistributions.

Example 1 As a toy example, we assume a tensor which is the output of an
operator and also the input of another operator. This tensor has the strategy
J2, 1K, is thus split into 2 shards a1 and a2. When the computation is run on
4 devices (di)1≤i≤4, each of a1 and a2 will be replicated once.

If the tensor assignments are the same for both operators, for instance a1
is processed by devices d1 and d2 and a2 by d3 and d4, no redistribution is
needed. However, it could also be that as the input of the second operator, a1
must be processed by d1 and d3 and a2 by d2 and d4 , in which case even if
the strategies looked the same, some redistribution is needed.

Crucially, in the above case where the assignments were switched, the shard
a1 must be sent to d3 (from d1 or d2), and similarly for a2 to d2. If the assign-
ments were swapped, d1 or d3 would need to send a1 to d2. As in hierarchical
clusters, communication between d1 and d2 may be significantly faster than
between d1 and d3 (this will be made explicit in next section), we can see that
what looked like straightforward sharding strategies can lead to dramatically
different performances depending on the implementation.

As a result, device assignments and redistributions are often generated in
ad hoc and naive ways and cannot be taken into account by DL developers
when designing DNNs. It could only remain true when deploying a distributed
DNN on a tiny cluster where the communication costs between devices are
perfectly homogeneous. However, in real world, a DNN may be of giant size
and need thousand of devices for training it. That invokes a hierarchical clus-
ter where the communication costs are heterogeneous. We thus propose to
shift the threshold of DNN design to include device assignments, whose for-
malism is described in the next section. This shift of perspective along with
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new formalism and hypotheses on DNN clusters and their hierarchical com-
munications allows for a detailed analysis of communication performance of
redistribution generation algorithms. The problem of inserting optimal com-
munication primitives, although simplified, remains complex, and we propose
an efficient algorithm to solve it.

3 Deploying of Distributed Deep Neural Networks

3.1 Hierarchical abstract machine

Inspired by BSP [17], using a high-level parallel programming model with an
abstract machine will generalize hardware impacts instead of needing to han-
dle case by case with different topologies and characteristics of cluster. The
modern ML clusters, like Huawei Atlas1 and Nvidia DGX2, are organized in a
hierarchical way: a system could be composed of one or several racks, a fully-
loaded rack is composed of 8 computing nodes, a computing node is composed
of 2 computing groups, and one computing group is composed of 4 accelerators.
Thus we have fast intra-node communication and slow inter-node communi-
cation, which makes it particularly important to consider the topology and
characteristics of a cluster network before designing device assignment and
resharding algorithms. The accelerators from different computing nodes com-
municate between them via hierarchical switches with a fat-tree topology, and
the accelerators inside a computing node communicate via HCCL or NCCL
with a twisted-taurus topology. We can resume that a hierarchical and sym-
metric abstract machine could cover the most recent hardware architectures.

We take the SGL [8] hierarchical bridging model as our basic abstract
machine, to avoid the oversimplification of communication by BSP, and refine
it to a binary tree. The choice of SGL is also because it was already extended to
DL and implemented in MindSpore [18]. We observed that, in both industrial
and academic settings, many ML clusters typically use a number of devices
that is a power of 2 to achieve best performance, so we will assume for the
rest of the paper that the number of devices satisfies N = 2p for some integer
p, to simplify our theoretical analysis. This assumption allows us to define an
abstract hierarchical and symmetric machine using a perfect tree structure,
similarly to the analysis of [18]. The leaves of the tree represent devices, and
inner nodes represent the group of all their children devices, which typically
correspond to a group of adjacent devices, or belonging to the same rack or
server. The root node thus represents the group of all the devices of the cluster.
Since we are sharding tensors evenly between N = 2p devices, the numbers
appearing in strategies will always be powers of 2, and we will even assume
for simplicity that they will always be 1 or 2 (this is equivalent if we allow
ourselves to reshape tensors to add tensor dimensions to split along).

1 https://e.huawei.com/en/products/computing/ascend/atlas-900-ai
2 https://www.nvidia.com/en-us/data-center/dgx-platform/
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3.2 Communication cost

By symmetry of the cluster, all groups of devices at depth level i of the tree
share the same communication capacity gi. The cost of the communication
between two devices associated with leaves u and v is q × gi, where q is the
amount of data transferred and i is the level of the lowest common group, or
ancestor of u and v in the tree. The communication capacities are assumed to
be increasing the deeper they are in the tree. We assume that gi > gi+1, which
in practice means that so we could always consider optimal to minimize the
amount of communication going through a slower connection at the expense of
augmenting the amount of communication going through faster connections,
even by a bigger amount.

This is the basis of our analysis on which depends the choices of our algo-
rithm. We observed that the bigger a cluster is, the more benefit we draw from
this strongly hierarchical model, as the communication links between faraway
devices are orders of magnitude slower than the ones connecting close devices.

3.3 Device assignment

Once the strategies of each operators’ tensors are chosen, we need to decide
which shards will be processed on which devices. This is in itself a complex
problem, and is critical as it ultimately defines which communication will be
needed between which devices. There are theoretically N ! ways to assign N
shards to N devices, but exploiting the symmetries of sharding and of the
cluster can reduce this search space while keeping a wide range of sensible (i.e.
sufficiently symmetric) assignments. The idea is to assign tensor parallelism
axes to device parallelism axes, that correspond to the hierarchical division of
the cluster into groups of close devices. These device axes, or device dimen-
sions, are represented by a device matrix which is a vector d where di is the
number of children of each node in the i-th level of the abstract tree defined
in 3.1. Note that as a consequence

∏
i di = N = 2p, and all di are powers of 2.

A tensor dimension i can then be sharded along device dimension j if they
are split the same number of time, i.e. if dj = si. In practice device matrices
do not need to match the cluster hierarchy, device dimensions can split or
merge several physical device groups: device matrices can be different for each
tensor layout and as long as the product of their elements is equal to the device
number, they can be used to specify a symmetric device assignment. Since we
assume in this paper that tensor dimensions are always sharded once or twice,
a vector with p elements all equal to 2 is always a valid device matrix.

The assignment of tensor parallelism dimensions to device dimensions is
realized by another map M : Ṽ → V̂ , (o, t, s) 7→ (o, t, s,m) where m is a tensor
map of the same shape of t and s such that if the tensor dimension i is not
sharded (i.e. si = 1), mi = ∅, and otherwise mi is the index of the device
dimension to which i is sharded along.
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Finding an optimal M has a combinatorial complexity, equivalent to find-
ing an optimal S. Except the parameter tensors, most tensors in the computa-
tional graph are both an input and output tensor of successive operators. The
impact from the choice of parallelism on operators will be quickly propagated
to the whole graph in non-trivial ways. Therefore, the choice of a tensor map
has implications on the optimal assignment of all connected tensors.

Redistributions are needed when the input and output layouts of a tensor
differ. This task could be done with collective communications (e.g. AllGather
and Slice), that can efficiently and concisely express all communication pat-
terns needed for redistribution between all symmetric layouts expressible us-
ing device matrices and tensor maps. There are often many possibilities for
arranging these collective communication operations, especially in cases where
sophisticated and diverse tensor layouts are used with large numbers of devices,
which is becoming the norm with automatic fine tuning of sharding strategies
to improve large scale parallel training performance. Different operation se-
quences can have vastly different execution times and memory usage given the
orders of magnitudes between close devices and distant devices link perfor-
mances. We propose in the following section a topological-aware hierarchical
algorithm to optimize the generation of collective communication operation
sequences and analyze its performance from a symbolic point of view under
the aforementioned assumptions.

4 Performance Enhancement

4.1 Preliminaries

Before formally presenting our algorithm, we clarify first some preliminaries.
Our algorithm is applied separately on each tensor as the choices of com-
munication operations do not interfere with each other. It takes as input an
input layout min and the output layout mout to which it must be converted.
After the sharding strategy decision (S) and the device assignment (M), it
can happen that the device matrices and tensor shapes do not match, which
requires unifying them. This can be done in the general case by switching to
device matrices of the form [2, 2, 2, . . .] with p elements, reshaping the tensors
and modifying the tensor maps accordingly. Note that this first step does not
actually change the physical distribution of the tensors but only their software
representation, w.r.t. Sec 3.

Once the shapes and the device matrices match, the task can be seen
uniquely as determining a sequence of redistribution operations that trans-
forms the input tensor map into the output tensor map and minimizes the
communication cost. The two operations that we will use are AllGather and
Slice which are available on all hardware architectures, and will not assume
any specific implementation tricks on these, which can orthogonally be ap-
plied to improve the overall performance of redistribution. Some advanced
operations like AllToAll could also be used, but were left out to simplify the
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analysis. They are non primitive collective communication, and require case-
by-case optimal implementations [9]. Therefore, our algorithm focus on more
general cases for being usable in the most possible configurations. Taking into
account a more diverse set of primitives could be a ground for future work.

AllGather is a collective communication operation that concatenates tensor
slices from all devices in a device group and stores the result on each device. If
applied along a tensor dimension i sharded along device dimension mi (written
AllGather(i)), the result tensor layout now hasm′

i = ∅ and the communication
cost of the operation is gmi

×
∏

k
tk
sk

(the second member represents the size of

the tensor initially on each device). The tensor shards stored on each device
have their size multiplied by dmi

at the end of the operation.
Slice is the opposite operation, it is used to split tensors in order to dis-

tribute them between devices of a group. When applied along a tensor dimen-
sion i and device dimension j (written Slice(i, j)) if mi = ∅ and ∀k,mk ̸= j,
the new tensor layout then has m′

i = j. Since it is executed locally on each
device there is no communication cost, and the computation cost is again pro-
portional to the shape of the initial tensor layout i.e. 1

dj

∏
k

tk
sk
. The tensor

shards stored on each device have their size divided by dj after the operation.

4.2 Redistribution chains

For most input/output layout pairs, and particularly when using simple par-
allelism plans like data parallelism or model parallelism, the redistributions
needed will be simple and straightforward. Some tensor dimensions i can sat-
isfymin

i = mout
i , in which case nothing is to be done. Ifmin

i ̸= ∅ andmout
i = ∅,

an AllGather(min
i ) needs to be performed so that the tensor dimension i goes

from sharded to replicated. However, sometimes device dimensions can appear
both in the input and in the output layout at different tensor dimensions, but
we cannot split several tensor dimensions along the same device dimension, so
we will need to process more than one AllGather on one tensor dimension by
allowing a Slice on the other dimension. These configurations order some pairs
of tensor dimensions where one must be processed before another, linking the
way we treat them.

Fig. 2 Redistribution sequence on 8 devices

Example 2 Let min = [1 2 3] and mout = [2 1 ∅]. The two first tensors
dimensions are split in both layouts, but they need to be switched, while the
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third is only split in the input, and must be gathered across device dimension 3.
Since one tensor dimension must be split across at most one device dimension,
it is necessary to unsplit both dimensions 1 and 2 before splitting them again.

One thing to be noted is that even if the two first dimensions can be
treated independently from the last, the tensor shards that will be sent over the
network will have the same size after two AllGather and two Slice, whereas they
will be twice bigger after one AllGather. Thus it is more optimal to do first the
two first dimensions and then the last one. An efficient redistribution sequence

is (we write AG for AllGather and S for Slice) [1 2 3]
AG(1)−→ [∅ 2 3]

AG(2)−→
[∅ ∅ 3]

S(1,2)−→ [2 ∅ 3]
S(2,1)−→ [2 1 3]

AG(3)−→ [2 1 ∅]. Steps 1, 3, 5 and 6 are shown
in Figure 2.

The links defined above can create chains and even cycles of dependen-
cies. Our algorithm starts by splitting the tensor dimensions into independent
chains and cycles that can be treated in any order (it corresponds to splitting
the graph of tensor dimensions and their links into its connected components).
We analyze the effect of the resolution of each chain and cycle, compare their
relative communication and computation cost, arrange them in an optimal
way and insert their associated redistributions in this order independently.

We list the different types of chains and cycles in Table 1, representing
them using two lines of rearranged and reindexed device dimensions. The de-
vice dimensions are to be thought as being extracted from the input tensor
map at the top and the output tensor map at the bottom, and they are on
the same column if they corresponded to the same tensor dimension initially,
which are rearranged to follow the structure of the chain. Device dimensions
with a variable name are assumed to be different from ∅, two device dimen-
sions of a chain with the same name are equal, and a variable with a tilde on
top means that it is not present anywhere else in the tensor maps. We don’t
give the exact cost but an approximation based on the assumption that the
ratios gi/gi+1 are very large, and consequently the cost of a sequence of com-
munication operations along different links will be roughly equal to the cost of
its communication using the slowest link. It can be shown that the table enu-
merates all possible chain formats. Indeed, classifying the device dimensions
as empty, used twice or used only once in the two matrices, we can see that
the first or last pairs of the chains shown span all the possible combinations,
and the rest of the chains can be seen as a deterministic graph exploration.

4.3 Main algorithm

We first outline here the main algorithm, and then explain in more details how
each redistribution chain is handled. Given the specifics of the AllGather and
Slice operations explicated in 4.1, all the communication cost of resharding is
carried by the AllGather operations and proportional to the size of the tensor
on which they are applied. As the system is assumed to be highly hierarchical,
i.e. ratios gi/gi+1 are assumed to be very large, we will consider an algorithm
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Table 1 The different types of chains and cycles of device dimensions.

Name Chain format Communication cost

Empty chain

[
∅
∅

]
,

[
m
m

]
0

Split

[
∅
m̃

]
0

Neutral chain of type 1

[
∅ m1 m2 . . . ml

m1 m2 . . . ml ∅

]
max
1≤j≤l

(gmj )×
∏

k
tk
sk

Neutral chain of type 2

[
m̃1 m2 m3 . . . ml

m2 m3 . . . ml m̃l+1

]
max

(
max
2≤j≤l

(gmj ), gm̃1

)
×

∏
k

tk
sk

Split chain

[
∅ m1 m2 . . . ml

m1 m2 . . . ml m̃l+1

]
max
1≤j≤l

(gmj )×
∏

k
tk
sk

Concatenation chain

[
m̃1 m2 m3 . . . ml

m2 m3 . . . ml ∅

]
max

(
max
2≤j≤l

(gmj ), gm̃1

)
×

∏
k

tk
sk

Cycle

[
m1 m2 . . . ml

m2 . . . ml m1

]
max
1≤j≤l

(gmj )×
∏

k
tk
sk

to be optimal if its AllGather operations along the slowest links are performed
on the smallest possible tensors. Since it can be shown that there is never
a need to do more than one AllGather accross each hierarchical level, we
can reformulate this requirement by associating a resharding (a sequence of
AllGather(i) and Slice(i, j)) to a tuple indexed by hierarchical levels where
the element at index i is the size of the tensor at the time AllGather(i) would
be performed, or 0 if there is none: an optimal algorithm should then produce
a resharding such that this tuple is the lexicographically smallest possible.

In order to achieve this goal, the idea of our algorithm is to handle first the
redistribution chains that reduce the sizes of the tensors, then the ones which
do not change them, and lastly those that increase them. Among the chains
that decrease the size of the tensors, it computes those that need an AllGather
with the fastest links first, as they will be performed on larger tensors. Con-
versely among the chains that increase the size of the tensors those that need
to use an AllGather on a slow link are done first. The pseudo code is given
in Algorithm 1. The Reshard procedure is a set of handcrafted algorithms for
each different type of chain that intend to minimize the communication cost of
the resharding they produce without introducing unnecessary communication
on unused device dimensions in order to guarantee that they can be reordered
and applied independently.

We list below how Reshard handles redistribution chains of each type.

– Empty chain: nothing needs to be done.

– Split

[
∅
m̃

]
: the resharding is a single Slice(m̃).
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Algorithm 1 Computes an optimal resharding sequence

Input layouts min and mout of lengths l
Output ReshardingSequence

chains ← {∅, ∅, ∅} ▷ Chains that decrease, keep, and increase the tensor size
for 1 ≤ i ≤ l do

if i is not in any chain seen yet then
chain, cost ← ComputeChain(i) ▷ cost: smallest level needed in communication
type ← ChainType(chain)
chains[type] ← {cost,chain}

end if
end for
Sort chains[0] by decreasing first element ▷ Chains that decrease tensor size
Sort chains[2] by increasing first element ▷ Chains that increase tensor size
ReshardingSequence ← ∅
for 0 ≤ type ≤ 2 do

for all chain in chains[type] do
ReshardingSequence ← ReshardingSequence + Reshard(chain)

end for
end for

– Split chain

[
∅ m1 m2 . . . ml

m1 m2 . . . ml m̃l+1

]
: we concatenate along the input device

dimension then split along the output device dimension from right to left,
which gives the resharding sequence <AllGather(l+ 1), Slice(l+ 1, m̃l+1),
AllGather(l), Slice(l,ml), . . . , AllGather(2), Slice(2,m2), Slice(1,m1) >.

– Neutral chain of type 2

[
m̃1 m2 m3 . . . ml

m2 m3 . . . ml m̃l+1

]
: we do the same as

for Split chains, except the first tensor dimension also needs to be con-
catenated, which gives the sequence <AllGather(l + 1), Slice(l + 1, m̃l+1),
AllGather(l), Slice(l,ml), . . . , AllGather(1), Slice(1,m1) >.

– Neutral chains of type 1

[
∅ m1 m2 . . . ml

m1 m2 . . . ml ∅

]
: they need to be treated

from left to right in order to avoid doing two consecutive AllGather, which
gives <AllGather(2), Slice(1,m1), . . ., AllGather(l + 1), Slice(l,ml)>.

– Concatenation chain

[
m̃1 m2 m3 . . . ml

m2 m3 . . . ml ∅

]
: Here we can only start with

an AllGather, and by doing so on any dimension leaves us with two neutral
chains (of types 1 on the right and 2 on the left), which we can then
solve independently as previously. As the first AllGather will be done on
a tensor half as big as all the others in the sequence, we should start by
concatenating along the device dimension with the biggest communication
capacity to gain a factor 2.

– Cycle

[
m1 m2 . . . ml

m2 . . . ml m1

]
: here again the first operation must be an All-

Gather, after which it becomes a split chain. Since the first AllGather will
be performed on a tensor twice smaller than the others, we start with the
device dimension with the slowest communication.
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5 Experiments

We ran our experiments using a cloud cluster having a total of 22 Atlas com-
puting nodes. Each node contains 8 Ascend 910 accelerator devices, described
in [11]. The inter-node communication is via a 100 Gbps on-chip RoCE in-
terface equipped by all devices, through one or more switches (depending on
intra- or inter-rack). The intra-node communication is via a 240 Gbps HCCS,
which is a Huawei in-house high-speed interface for Ascend 910. The band-
width varies slightly between devices in the same node, we thus consider they
are in the same level of hierarchy in our experiments.

We used the MindSpore AI computing framework on top of an Atlas cluster
to perform our experiments. We evaluated our algorithm on Pangu-α [21], a
large language model (LLM) based on the Transformer DNN architecture,
which usually requires thousands of devices to train. We take as a starting
point a pre-defined configuration of Pangu-α (13B) to have a realistic layer
size with an embedding size of 5120 and 40 attention heads. We changed the
number of these layers to 2 so that the network could fit into 8 to 64 devices.

We evaluate the performance of our algorithm on two different strategy
generation methods. In the first method, we take sharding strategies auto-
matically generated by the MindSpore framework using the method described
in [18]. Strategies are assigned automatically to each operator with a cost
model aiming to minimize communications. In the second method, we take as
a starting point sharding strategies manually chosen by the DL experts who
implemented the DNN, for each operator in each elementary block (encoder,
linear layer, embedding...). We then modify these strategies so that redistri-
butions are inserted between operators with different strategies.

The automatic method explores more possibilities, which leads to a bigger
variety of potential sharding strategies that we can do by hand; it also opti-
mizes strategies for performance by minimizing redistributions. However, large
networks may require more consideration for strategies that reduce memory
usage in order to fit a network in devices with limited memory. This trade-
off means that strategies might be chosen differently and involve more costly
redistributions compared to strategies that would reach better performance
by avoiding most redistributions if the available memory was enough. Better
performance might also be reached by performing some costly redistributions
in order to choose better strategies for the operators following the redistribu-
tions. The manual strategy method allows us to specify sub-optimal strategies
for some blocks and observe the potential performance gain of our algorithm
when heavier and more complex redistributions are chosen.

Each test was done on different numbers of devices in order to showcase
the performance of our algorithm with different cluster configurations. Specif-
ically, since we worked with machines where the devices were grouped 8 by 8
as computing nodes on racks, there should be little to no gain given the hierar-
chical nature of the clusters when using 8 or less devices. Each time we double
the number of devices, one hierarchical level in the device matrix is added,
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which increases the likelihood of redistributions needing transfers along links
with communication capacities of different orders of magnitude.

We evaluated our algorithm comparatively with the non-hierarchical al-
gorithm of MindSpore [4], and observed the speedup with respect to the pa-
rameters we varied. We increase the batch size (B) along with the number of
devices (dev #) so that the workload and redistributions per device remain
similar. We use step times as a performance metric, reported in milliseconds
(ms). Step times correspond to the time it took for handling a batch of data.
The reported results are an average of a hundred of step times, as reported by
MindSpore logs when running Pangu-α.

dev # B
automatic strategies manually-twisted strategies

step time (ms)
speedup

step time (ms)
speedup

default hierarchical default hierarchical
8 8 293.152 293.081 100.02% 329.396 329.42 99.99%
16 16 350.679 350.061 100.18% 722.646 711.084 101.63%
32 32 471.976 470.263 100.36% 1584.937 1493.349 106.13%
64 64 630.907 627.41 100.56% 2907.05 2410.023 120.62%

Table 2 Performance comparison of hierarchical redistribution algorithm on different con-
figurations of Pangu-α with 2 layers

The left part of Table 2 shows the end-to-end step time performance of our
method when paired with automatic strategies. We observe a modest speedup
that increases with the number of devices and levels of topological hierarchy.
This is because the automatically generated strategies are chosen for perfor-
mance and avoid introducing many large redistribution for this network. On
the other hand, this test case showed that our algorithm does not have a
negative side effect on the performance of the light redistribution cases.

In our second test case, we manually changed the parallel strategies so that
a sequence of redistribution operators was inserted between computation oper-
ators. The changes of strategy were around the Attention block (the backbone
part of a Transformer DNN) computation, specifically around its two Batch-
MatMul operators that computes the Attention for the Head of each data
item. The right part of Table 2 shows the performance of our algorithm in this
configuration. We observed no performance difference with 8 devices (0.01% is
a tolerable measurement error), because the communication within the same
node is still homogeneous (8 devices are in the same computing node). How-
ever, we observed increasing speedups (up to +20%) as the number of devices
(thus nodes) increases. This is because the bandwidth factor becomes more
significant between different computing nodes.

6 Related works

While communication optimization in the setting of DL training redistribu-
tions has been long overlooked and left from scientific papers to implementa-
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tion details, it is only very recently that more interest is being brought to this
problem. A few other new articles investigate it and we believe a lot of excit-
ing progress is yet to be accomplished. As such the survey [10] on automatic
parallelism in DNN training identifies the development of topology-aware com-
munication as one of the main future challenges of the domain. D-Rec is one
of the most promising parallelism strategy automatic generation algorithms
w.r.t. its efficiency on strategy search speed [18] and scalability on large-scale
neural networks and clusters [19]. However D-Rec did not provide a solution
on the device assignment.

A hierarchy-aware algorithm based on profiling the different communica-
tion speeds (as opposed to our symbolic approach with the hypothesis that
gi/gi+1 is large) is proposed in [20]. Using another set of primitives and a
slightly different syntax for tensor sharding, they develop heuristics to gen-
erate a set of candidate redistribution sequences and rank them using pro-
filed communication costs. Another similar profiling-based algorithm [2] gen-
erates redistributions step-by-step by greedily choosing the fastest redistribu-
tion step based on a communication cost model until the whole redistribution
is achieved.

Finally, while not topologically-aware, the algorithm described in [15] is
another interesting approach at optimizing redistributions through minimiza-
tion of memory usage (that has to be understood as minimizing the amount of
data exchanged). They provide a theoretical analysis, based on formal seman-
tics, which allows them to prove some optimality results under the hypothesis
of uniform communication speeds.

7 Conclusion

In this paper, we presented a hierarchical redistribution algorithm that decides
which communications to perform in which order when redistributing tensors
between multiple devices in a hierarchical cluster. This algorithm explicitly
takes into account the hierarchical nature of AI clusters in order to minimize
the cost of redistributing data between devices. We experimented with this
algorithm and we observed a speedup in a hierarchical scenario compared to
the state-of-the-art redistribution algorithm implemented in the same open-
source AI framework.
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Lenore M. R. Mullin

Abstract We present a new formulation for parallel matrix multiplication
(MM) to out-perform the standard row-column code design. This algorithm
is formulated in the MoA formalism (A Mathematics of Arrays, [6][2]) and
combines an array view of hardware (dimension-lifting to extend indexing
to physical memory/processing units), with a contiguous data layout derived
from static transformations. This view of a hardware-software model is thus a
bridging model in the sense of Valiant’s BSP. OpenACC code was derived from
the MoA expression’s normal form, producing optimal block sizes using the
static information of types and shapes. Experiments were run on Nvidia V100
GPUs and reveal energy consumption which is quadratic in N, i.e. linear in
the size of matrix. More generally this approach is proposed for formulating,
optimizing, and mapping array algorithms to hardware. This work builds upon
recently published results of NREL scientists.

Keywords Mathematics of arrays · compilation · performance optimization ·
data- vs hardware shape · memory-processor layout

1 MoA Matrix Multiplication

Programmers are seeking high level languages and tools to formally describe,
and ideally verify, algorithms in their domains while compiling to accelera-
tors without requiring an extensive engineering background. Current research
addresses this problem[1], with optimizations done after the specification of
algorithms in a high level language like Python or C and use pragmas. These
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Fig. 1 Inherent parallelism of the MoA matrix-matrix multiplication (GEMM). The different
colors and numbers on matrices A and B represent the pairings for the k index involved in
the scalar-vector multiplication, e.g. the matrix element labeled 0 in A is multiplied with
the row vector labeled 0 in B. A sum reduction is then performed over the resulting row
vectors to yield the ith row in C.

incremental changes to existing theories and methods should continue. But,
as suggested recently in CACM[3], there is room at the top for new ideas, and
theories. We propose MoA (A Mathematics of Arrays [6][2]) to play this role of
a formalism to bridge high-level functional algorithm descriptions with hard-
ware and memory shapes and sizes. Experiments were run on Nvidia V100s
while apriori theorizing about optimal block size using shapes and types of
arguments.

The general matrix-matrix multiplication (GEMM) in MoA is a special case of
the inner product for 2-D arrays (matrices), emphasizing that in the MoA MM
all arrays are accessed contiguously. Define A as an m×n matrix, B as n×p,
and C as m×p. In MoA notation, the shapes of A,B, and C are respectively
ρA = ⟨m, n⟩, ρB = ⟨n, p⟩, ρC = ⟨m, p⟩ so the valid indices of the matrices
that are bounded by shapes: ∀ i, j, k. 0 ≤ i < m 0 ≤ j < p 0 ≤ k < n.
The MoA Operational Normal Form (ONF) for GEMM[7,8] is:

C[(i× p) + j] :=

n−1∑
k=0

A[(i× n) + k]×B[(k × p) + j] (1)

This is a ”generic row-major form” whose meaning is that ∀i : (0..m − 1),
∀j : (0..p − 1), ∀k : (0..n − 1) the content of memory from the initial address
@C of array C is:

@C+ (i× p) + j :=
n−1∑
k=0

(@A+ (i× n) + k)× (@B+ (k × p) + j) (2)

where @A (resp. @B) is the initial address of array A (resp. B). Let the
following notation denote the 2-d Matrix Multiplication defined by MoA’s
inner product definition in (1),

C = A •B (3)

In other words the theory’s inner product operator on 2D arrays is equivalent
to the definition of matrix multiplication.

Equation (1) is the generic code for a sequential program in MoA. Figure
1 illustrates the inherent parallelism of the MoA GEMM algorithm. In each ith
row of the resultant arrayC, each scalar-vector operation involving the column
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Fig. 2 Inherent parallelism of the blocked MoA general matrix-matrix multiplication (GEMM)
algorithm. Just like the scalar GEMM design (Fig. 1, the block-block multiplications between
different blocks in the row of matrix A and the corresponding rows of blocks in matrix B
are independent of one another, and a sum reduction over the rows of blocks are performed
to yield the final answer of blocks in matrix C.

index j is independent of each other. The ith row of C is contiguously filled
in by the summation of scalar-vector multiplications involving each matrix
element at the ith row and kth column of A (the scalar) with each kth row of
B (the vector) obtained by accessing the arguments contiguously. A row-wise
sum reduction is then applied over the k index to yield the final answer as the
ith row in C.

Figure 2 shows how the blocking algorithm applies the inner product, Equa-
tion (3), to blocks in a round robin, row-major order, just like the scalar version
in Figure 1, but this time summing blocks (subarrays) of partial sums. With
each matrix block just large enough to fit in the L1 cache, each block operation
is performed contiguously, round robin style, and efficiently. Our algorithm:

1. was symbolically derived from a functional specification and equivalence
laws,

2. is a normal form exists and can be derived by confluent rewriting, much
like parallel functional or skeleton-based programs,

3. its resulting normal form can be written in C to express parallel execution
of loop-nests semi-explicit processor layout and memory-block accesses.

2 From Normal Form to C to Dimension Lifting

Dimension lifting is a way to abstract and unify an algorithm with the
architecture it maps to. Through dimension lifting, all parallelism is revealed
s.t. costs and optimizations become possible[5,4]. The C programs presented
herein are augmented with OpenACC, noting that after parallelism is revealed,
pragmas can be easily added with confidence of competitive performance with
CUDA[4].

First the generic design in Equation (1) is implemented in a C program we
call ip.c :

void ip ( double ∗C, double ∗A, double ∗B,
i n t s i z e l , i n t s i z e r , i n t np , i n t shr0 )

{ i n t i , j , sigma ;
f o r ( i =0; i<s i z e l ; i++)

{ f o r ( sigma=0; sigma<shr0 ; sigma++)
{ f o r ( j =0; j<s i z e r ; j++)

{C[ j+i ∗ s i z e r ]= C[ j+i ∗ s i z e r ]
+ A[ ( i ∗ shr0)+sigma ] ∗ B[ ( sigma∗ s i z e r )+ j ] ; }}}}
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Then dimension lifting over the rows of A and C, the i loop, reveals par-
allelism and assigns an index to processors. This was done by code we call
ip rows.c:

void ip rows ( double ∗C, double ∗A, double ∗B,
i n t s i z e l , i n t s i z e r , i n t np , i n t shr0 )

{ i n t i , j , k , ip , sigma ;
f o r ( k=0; k<np ; k++)
{ f o r ( ip =0; ip<( s i z e l /np ) ; ip++)
{ f o r ( sigma=0; sigma<shr0 ; sigma++)
{ f o r ( j =0; j<s i z e r ; j++)
{ C[ j+( ip+( s i z e l /np)∗k )∗ s i z e r ]= C[ j+( ip+( s i z e l /np)∗k )∗ s i z e r ]

+A[ ( ( ip+(( s i z e l /np)∗k ) )∗ shr0)+sigma ]
∗B[ ( sigma∗ s i z e r )+ j ] ; }}}}}

Dimension lifting over the columns of B reveals parallelism also. This would
break up the j loop as illustrated in the code below. Mapping each row of B
could be in groups of 8 e.g. to a vector register or a group of threads. Finally,
the sigma loop is broken up creating the block. This necessitates another
addition loop to add up the blocks realizing Figure 2.

void i p c o l s ( double ∗C, double ∗A, double ∗B,
i n t s i z e l , i n t s i z e r , i n t np , i n t shr0 , i n t r s i z e )

{ i n t i , j , jp , kp , sigma ;
f o r ( i =0; i<s i z e l ; i++)
{ f o r ( sigma=0; sigma<shr0 ; sigma++)

{ f o r ( jp=0; jp<( s i z e r / r s i z e ) ; jp++)
{ f o r ( kp=0; kp<r s i z e ; kp++)

{ C[ ( ( jp ∗ r s i z e )+kp)+ i ∗ s i z e r ]= C[ ( ( jp ∗ r s i z e )+kp)+ i ∗ s i z e r ]
+ A[ ( i ∗ shr0)+sigma ] ∗ B[ ( sigma ∗ s i z e r )+(( jp ∗ r s i z e )+kp ) ] ;

}}}}}

3 Performance measurements

We measured speed and energy consumption as a function of block sizes and
matrix sizes. The best time was achieved with a 32KB by 32KB block size
changing to 64KB by 64KB. Best time block size was correlated to best En-
ergy block size. The worst Time and Energy block sizes occurred when Power
and Heat were the best. A goal of this research is to identify how shapes can
predict execution time as a function of the array (dimension) size and help
obtain a linear relationship. Here are some meaningful time and energy mea-
surements for a V100 GPU with L1 cache size x = 128 (KiB), L2 cache size y
= 6 (MiB), Global memory size z = 32 (GiB), Number of SMs NSM = 80.



From array algebra to energy efficiency on GPUs ⋆ 130

In plot A, a 32 by 32 block, the purple graph, is sufficient for keeping time
linear (and minimal) until size about 9000. After that point its slope becomes
polynomial, and to maintain the linear performance a 64 by 64 block size
(green) can be chosen. For power vs an inverse relationship is observed: the
fastest, purple and green, graphs require the most power. Consequently, it is
possible to adjust blocksize given the size of the memory and size of the data
components.

4 Conclusion

A new matrix multiplication algorithm was presented with blocking described
in terms of dimension lifting, a term coined for the MoA (mathematics of
arrays) theory, that formalizes splitting of indices to give an index to an archi-
tectural component, thus increasing the dimension of the algorithm. Dimen-
sions increase because MoA views the algorithm and architectural resources
in a uniform Cartesian way. This approach internalizes the target hardware
shape in the array formalism and allows formal, high-level transformations to
optimize generated parallel code. Reproducible results imply that MoA’s con-
tiguous view of memory accesses outperforms the best efforts to optimize the
classical design[7,8].
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